- -

Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic

Mostrar el registro completo del ítem

Galiana, I.; Lozano-Torres, B.; Sancho, M.; Alfonso-Navarro, M.; Bernardos Bau, A.; Bisbal, V.; Serrano, M.... (2020). Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release. 323:624-634. https://doi.org/10.1016/j.jconrel.2020.04.045

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161402

Ficheros en el ítem

Metadatos del ítem

Título: Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic
Autor: Galiana, Irene Lozano-Torres, Beatriz Sancho, Mónica Alfonso-Navarro, María Bernardos Bau, Andrea Bisbal, Viviana Serrano, Manuel Martínez-Máñez, Ramón Orzaez, Mar
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, ...[+]
Palabras clave: Breast Cancer , Mesoporous silica nanoparticles , Senescence , Senolysis
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Controlled Release. (issn: 0168-3659 )
DOI: 10.1016/j.jconrel.2020.04.045
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jconrel.2020.04.045
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-84689-R/ES/DESCIFRANDO Y MODULANDO EL INTERACTOMA TRANSMEMBRANA DE LAS PROTEINAS BCL-2 COMO DIANA ANTITUMORAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F065/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/
Agradecimientos:
The M.O. laboratory members thank the financial support from the Spanish Government (project SAF2017-84689-R (MINECO/AEI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2019/065). The R.M. laboratory members ...[+]
Tipo: Artículo

References

Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001

Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211-219. doi:10.1016/j.tcb.2011.11.006

Sieben, C. J., Sturmlechner, I., van de Sluis, B., & van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 28(9), 723-737. doi:10.1016/j.tcb.2018.04.006 [+]
Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001

Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211-219. doi:10.1016/j.tcb.2011.11.006

Sieben, C. J., Sturmlechner, I., van de Sluis, B., & van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 28(9), 723-737. doi:10.1016/j.tcb.2018.04.006

Goldman, J. W., Shi, P., Reck, M., Paz-Ares, L., Koustenis, A., & Hurt, K. C. (2016). Treatment Rationale and Study Design for the JUNIPER Study: A Randomized Phase III Study of Abemaciclib With Best Supportive Care Versus Erlotinib With Best Supportive Care in Patients With Stage IV Non–Small-Cell Lung Cancer With a Detectable KRAS Mutation Whose Disease Has Progressed After Platinum-Based Chemotherapy. Clinical Lung Cancer, 17(1), 80-84. doi:10.1016/j.cllc.2015.08.003

Finn, R. S., Dering, J., Conklin, D., Kalous, O., Cohen, D. J., Desai, A. J., … Slamon, D. J. (2009). PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research, 11(5). doi:10.1186/bcr2419

Geoerger, B., Bourdeaut, F., DuBois, S. G., Fischer, M., Geller, J. I., Gottardo, N. G., … Chi, S. N. (2017). A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors. Clinical Cancer Research, 23(10), 2433-2441. doi:10.1158/1078-0432.ccr-16-2898

Kwapisz, D. (2017). Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Research and Treatment, 166(1), 41-54. doi:10.1007/s10549-017-4385-3

Pernas, S., Tolaney, S. M., Winer, E. P., & Goel, S. (2018). CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology, 10, 175883591878645. doi:10.1177/1758835918786451

Sutherland, R. L., & Musgrove, E. A. (2009). CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+disease. Breast Cancer Research, 11(6). doi:10.1186/bcr2454

Beaver, J. A., Amiri-Kordestani, L., Charlab, R., Chen, W., Palmby, T., Tilley, A., … Cortazar, P. (2015). FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor–Positive, HER2-Negative Metastatic Breast Cancer. Clinical Cancer Research, 21(21), 4760-4766. doi:10.1158/1078-0432.ccr-15-1185

Chiu, J. W., Kwok, G., Yau, T., & Leung, R. (2017). Editorial to «Palbociclib and letrozole in advanced breast cancer». Translational Cancer Research, 6(S2), S376-S379. doi:10.21037/tcr.2017.03.21

Traina, T., Cadoo, K., & Gucalp, A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 123. doi:10.2147/bctt.s46725

Turner, N. C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., … Cristofanilli, M. (2015). Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine, 373(3), 209-219. doi:10.1056/nejmoa1505270

Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S.-A., Masuda, N., … Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425-439. doi:10.1016/s1470-2045(15)00613-0

Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature Cell Biology, 21(1), 94-101. doi:10.1038/s41556-018-0249-2

Giaimo, S., & d’ Adda di Fagagna, F. (2012). Is cellular senescence an example of antagonistic pleiotropy? Aging Cell, 11(3), 378-383. doi:10.1111/j.1474-9726.2012.00807.x

Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823

Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. Journal of Cell Biology, 192(4), 547-556. doi:10.1083/jcb.201009094

He, S., & Sharpless, N. E. (2017). Senescence in Health and Disease. Cell, 169(6), 1000-1011. doi:10.1016/j.cell.2017.05.015

McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65-77. doi:10.1083/jcb.201708092

Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-Induced Senescence in Cancer. JNCI: Journal of the National Cancer Institute, 102(20), 1536-1546. doi:10.1093/jnci/djq364

Gordon, R. R., & Nelson, P. S. (2012). Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 15(1-2), 123-131. doi:10.1016/j.drup.2012.01.002

Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., … Fischer, A. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355-367. doi:10.1016/j.ccell.2017.01.007

Milanovic, M., Fan, D. N. Y., Belenki, D., Däbritz, J. H. M., Zhao, Z., Yu, Y., … Schmitt, C. A. (2017). Senescence-associated reprogramming promotes cancer stemness. Nature, 553(7686), 96-100. doi:10.1038/nature25167

Parrinello, S., Coppe, J.-P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(3), 485-496. doi:10.1242/jcs.01635

Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J., & Robbins, P. D. (2017). The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 65(10), 2297-2301. doi:10.1111/jgs.14969

Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116

Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0

Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445

Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031

Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344

Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010

Kile, B. T. (2014). The role of apoptosis in megakaryocytes and platelets. British Journal of Haematology, 165(2), 217-226. doi:10.1111/bjh.12757

Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456

Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j

Su, Y.-L., & Hu, S.-H. (2018). Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics, 10(4), 193. doi:10.3390/pharmaceutics10040193

Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139

Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663

Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d

Kaur, P., Nagaraja, G. M., Zheng, H., Gizachew, D., Galukande, M., Krishnan, S., & Asea, A. (2012). A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer, 12(1). doi:10.1186/1471-2407-12-120

Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-Negative Breast Cancer. New England Journal of Medicine, 363(20), 1938-1948. doi:10.1056/nejmra1001389

Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57. doi:10.1038/nrc2772

Goel, S., DeCristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., … Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471-475. doi:10.1038/nature23465

Asghar, U. S., Barr, A. R., Cutts, R., Beaney, M., Babina, I., Sampath, D., … Turner, N. C. (2017). Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clinical Cancer Research, 23(18), 5561-5572. doi:10.1158/1078-0432.ccr-17-0369

Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., … Hwang, E. S. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5(2), 187-195. doi:10.1111/j.1474-9726.2006.00199.x

Potter, D. S., & Letai, A. (2016). To Prime, or Not to Prime: That Is the Question. Cold Spring Harbor Symposia on Quantitative Biology, 81, 131-140. doi:10.1101/sqb.2016.81.030841

Billard, C. (2013). BH3 Mimetics: Status of the Field and New Developments. Molecular Cancer Therapeutics, 12(9), 1691-1700. doi:10.1158/1535-7163.mct-13-0058

Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). [29] Mitochondrial membrane potential monitored by JC-1 dye. Mitochondrial Biogenesis and Genetics Part A, 406-417. doi:10.1016/0076-6879(95)60154-6

Sugrue, M. M., Wang, Y., Rideout, H. J., Chalmers-Redman, R. M. E., & Tatton, W. G. (1999). Reduced Mitochondrial Membrane Potential and Altered Responsiveness of a Mitochondrial Membrane Megachannel in p53-Induced Senescence. Biochemical and Biophysical Research Communications, 261(1), 123-130. doi:10.1006/bbrc.1999.0984

Wang, D., Liu, Y., Zhang, R., Zhang, F., Sui, W., Chen, L., … Ji, J. (2016). Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget, 7(19), 28286-28300. doi:10.18632/oncotarget.8536

Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., … Serrano, M. (2005). Senescence in premalignant tumours. Nature, 436(7051), 642-642. doi:10.1038/436642a

Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., … van Deursen, J. M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232-236. doi:10.1038/nature10600

Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A. C., … DePinho, R. A. (2010). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102-106. doi:10.1038/nature09603

Lehmann, M., Korfei, M., Mutze, K., Klee, S., Skronska-Wasek, W., Alsafadi, H. N., … Königshoff, M. (2017). Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosisex vivo. European Respiratory Journal, 50(2), 1602367. doi:10.1183/13993003.02367-2016

Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., … LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8(1). doi:10.1038/ncomms14532

Hecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. (2014). Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 6(231). doi:10.1126/scitranslmed.3008182

Sanders, Y. Y., Liu, H., Liu, G., & Thannickal, V. J. (2015). Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 79, 197-205. doi:10.1016/j.freeradbiomed.2014.12.008

Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004

Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., … Sharpless, N. E. (2013). Monitoring Tumorigenesis and Senescence In Vivo with a p16INK4a-Luciferase Model. Cell, 152(1-2), 340-351. doi:10.1016/j.cell.2012.12.010

Correia-Melo, C., & Passos, J. F. (2015). Mitochondria: Are they causal players in cellular senescence? Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(11), 1373-1379. doi:10.1016/j.bbabio.2015.05.017

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem