- -

Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Galiana, Irene es_ES
dc.contributor.author Lozano-Torres, Beatriz es_ES
dc.contributor.author Sancho, Mónica es_ES
dc.contributor.author Alfonso-Navarro, María es_ES
dc.contributor.author Bernardos Bau, Andrea es_ES
dc.contributor.author Bisbal, Viviana es_ES
dc.contributor.author Serrano, Manuel es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.contributor.author Orzaez, Mar es_ES
dc.date.accessioned 2021-02-16T04:32:59Z
dc.date.available 2021-02-16T04:32:59Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0168-3659 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161402
dc.description.abstract [EN] The induction of senescence produces a stable cell cycle arrest in cancer cells, thereby inhibiting tumor growth; however, the incomplete immune cell-mediated clearance of senescent cells may favor tumor relapse, limiting the long-term anti-tumorigenic effect of such drugs. A combination of senescence induction and the elimination of senescent cells may, therefore, represent an efficient means to inhibit tumor relapse. In this study, we explored the antitumor efficacy of a combinatory senogenic and targeted senolytic therapy in an immunocompetent orthotopic mouse model of the aggressive triple negative breast cancer subtype. Following palbociclib-induced senogenesis and senolysis by treatment with nano-encapsulated senolytic agent navitoclax, we observed inhibited tumor growth, reduced metastases, and a reduction in the systemic toxicity of navitoclax. We believe that this combination treatment approach may have relevance to other senescence-inducing chemotherapeutic drugs and additional tumor types. Significance: While the application of senescence inducers represents a successful treatment strategy in breast cancer patients, some patients still relapse, perhaps due to the subsequent accumulation of senescent cells in the body that can promote tumor recurrence. We now demonstrate that a combination treatment of a senescence inducer and a senolytic nanoparticle selectively eliminates senescent cells, delays tumor growth, and reduces metastases in a mouse model of aggressive breast cancer. Collectively, our results support targeted senolysis as a new therapeutic opportunity to improve outcomes in breast cancer patients. es_ES
dc.description.sponsorship The M.O. laboratory members thank the financial support from the Spanish Government (project SAF2017-84689-R (MINECO/AEI/FEDER, EU)) and the Generalitat Valenciana (project PROMETEO/2019/065). The R.M. laboratory members thank the financial support from the Spanish Government (projects RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/FEDER, EU) and the Generalitat Valenciana (project PROMETEO 2018/024). Both I.G. and B.L-T. are grateful to the Generalitat Valenciana and the Spanish Ministry of Economy, respectively, for their Ph.D. grants. I.G. would like to thank I. Borreda and J. Forteza and the Instituto Valenciano de Patologia for their special collaboration and F. Sancenon for his appreciated help es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Controlled Release es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Breast Cancer es_ES
dc.subject Mesoporous silica nanoparticles es_ES
dc.subject Senescence es_ES
dc.subject Senolysis es_ES
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jconrel.2020.04.045 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2017-84689-R/ES/DESCIFRANDO Y MODULANDO EL INTERACTOMA TRANSMEMBRANA DE LAS PROTEINAS BCL-2 COMO DIANA ANTITUMORAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101599-B-C22/ES/DESARROLLO Y APLICACION DE SISTEMAS ANTIMICROBIANOS PARA LA INDUSTRIA ALIMENTARIA BASADOS EN SUPERFICIES FUNCIONALIZADAS Y SISTEMAS DE LIBERACION CONTROLADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2019%2F065/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F024/ES/Sistemas avanzados de liberación controlada/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-100910-B-C41/ES/MATERIALES POROSOS INTELIGENTES MULTIFUNCIONALES Y DISPOSITIVOS ELECTRONICOS PARA LA LIBERACION DE FARMACOS, DETECCION DE DROGAS Y BIOMARCADORES Y COMUNICACION A NANOESCALA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Galiana, I.; Lozano-Torres, B.; Sancho, M.; Alfonso-Navarro, M.; Bernardos Bau, A.; Bisbal, V.; Serrano, M.... (2020). Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of Controlled Release. 323:624-634. https://doi.org/10.1016/j.jconrel.2020.04.045 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jconrel.2020.04.045 es_ES
dc.description.upvformatpinicio 624 es_ES
dc.description.upvformatpfin 634 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 323 es_ES
dc.identifier.pmid 32376460 es_ES
dc.relation.pasarela S\395072 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001 es_ES
dc.description.references Acosta, J. C., & Gil, J. (2012). Senescence: a new weapon for cancer therapy. Trends in Cell Biology, 22(4), 211-219. doi:10.1016/j.tcb.2011.11.006 es_ES
dc.description.references Sieben, C. J., Sturmlechner, I., van de Sluis, B., & van Deursen, J. M. (2018). Two-Step Senescence-Focused Cancer Therapies. Trends in Cell Biology, 28(9), 723-737. doi:10.1016/j.tcb.2018.04.006 es_ES
dc.description.references Goldman, J. W., Shi, P., Reck, M., Paz-Ares, L., Koustenis, A., & Hurt, K. C. (2016). Treatment Rationale and Study Design for the JUNIPER Study: A Randomized Phase III Study of Abemaciclib With Best Supportive Care Versus Erlotinib With Best Supportive Care in Patients With Stage IV Non–Small-Cell Lung Cancer With a Detectable KRAS Mutation Whose Disease Has Progressed After Platinum-Based Chemotherapy. Clinical Lung Cancer, 17(1), 80-84. doi:10.1016/j.cllc.2015.08.003 es_ES
dc.description.references Finn, R. S., Dering, J., Conklin, D., Kalous, O., Cohen, D. J., Desai, A. J., … Slamon, D. J. (2009). PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Research, 11(5). doi:10.1186/bcr2419 es_ES
dc.description.references Geoerger, B., Bourdeaut, F., DuBois, S. G., Fischer, M., Geller, J. I., Gottardo, N. G., … Chi, S. N. (2017). A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors. Clinical Cancer Research, 23(10), 2433-2441. doi:10.1158/1078-0432.ccr-16-2898 es_ES
dc.description.references Kwapisz, D. (2017). Cyclin-dependent kinase 4/6 inhibitors in breast cancer: palbociclib, ribociclib, and abemaciclib. Breast Cancer Research and Treatment, 166(1), 41-54. doi:10.1007/s10549-017-4385-3 es_ES
dc.description.references Pernas, S., Tolaney, S. M., Winer, E. P., & Goel, S. (2018). CDK4/6 inhibition in breast cancer: current practice and future directions. Therapeutic Advances in Medical Oncology, 10, 175883591878645. doi:10.1177/1758835918786451 es_ES
dc.description.references Sutherland, R. L., & Musgrove, E. A. (2009). CDK inhibitors as potential breast cancer therapeutics: new evidence for enhanced efficacy in ER+disease. Breast Cancer Research, 11(6). doi:10.1186/bcr2454 es_ES
dc.description.references Beaver, J. A., Amiri-Kordestani, L., Charlab, R., Chen, W., Palmby, T., Tilley, A., … Cortazar, P. (2015). FDA Approval: Palbociclib for the Treatment of Postmenopausal Patients with Estrogen Receptor–Positive, HER2-Negative Metastatic Breast Cancer. Clinical Cancer Research, 21(21), 4760-4766. doi:10.1158/1078-0432.ccr-15-1185 es_ES
dc.description.references Chiu, J. W., Kwok, G., Yau, T., & Leung, R. (2017). Editorial to «Palbociclib and letrozole in advanced breast cancer». Translational Cancer Research, 6(S2), S376-S379. doi:10.21037/tcr.2017.03.21 es_ES
dc.description.references Traina, T., Cadoo, K., & Gucalp, A. (2014). Palbociclib: an evidence-based review of its potential in the treatment of breast cancer. Breast Cancer: Targets and Therapy, 123. doi:10.2147/bctt.s46725 es_ES
dc.description.references Turner, N. C., Ro, J., André, F., Loi, S., Verma, S., Iwata, H., … Cristofanilli, M. (2015). Palbociclib in Hormone-Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine, 373(3), 209-219. doi:10.1056/nejmoa1505270 es_ES
dc.description.references Cristofanilli, M., Turner, N. C., Bondarenko, I., Ro, J., Im, S.-A., Masuda, N., … Slamon, D. (2016). Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. The Lancet Oncology, 17(4), 425-439. doi:10.1016/s1470-2045(15)00613-0 es_ES
dc.description.references Lee, S., & Schmitt, C. A. (2019). The dynamic nature of senescence in cancer. Nature Cell Biology, 21(1), 94-101. doi:10.1038/s41556-018-0249-2 es_ES
dc.description.references Giaimo, S., & d’ Adda di Fagagna, F. (2012). Is cellular senescence an example of antagonistic pleiotropy? Aging Cell, 11(3), 378-383. doi:10.1111/j.1474-9726.2012.00807.x es_ES
dc.description.references Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823 es_ES
dc.description.references Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. Journal of Cell Biology, 192(4), 547-556. doi:10.1083/jcb.201009094 es_ES
dc.description.references He, S., & Sharpless, N. E. (2017). Senescence in Health and Disease. Cell, 169(6), 1000-1011. doi:10.1016/j.cell.2017.05.015 es_ES
dc.description.references McHugh, D., & Gil, J. (2017). Senescence and aging: Causes, consequences, and therapeutic avenues. Journal of Cell Biology, 217(1), 65-77. doi:10.1083/jcb.201708092 es_ES
dc.description.references Ewald, J. A., Desotelle, J. A., Wilding, G., & Jarrard, D. F. (2010). Therapy-Induced Senescence in Cancer. JNCI: Journal of the National Cancer Institute, 102(20), 1536-1546. doi:10.1093/jnci/djq364 es_ES
dc.description.references Gordon, R. R., & Nelson, P. S. (2012). Cellular senescence and cancer chemotherapy resistance. Drug Resistance Updates, 15(1-2), 123-131. doi:10.1016/j.drup.2012.01.002 es_ES
dc.description.references Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., … Fischer, A. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355-367. doi:10.1016/j.ccell.2017.01.007 es_ES
dc.description.references Milanovic, M., Fan, D. N. Y., Belenki, D., Däbritz, J. H. M., Zhao, Z., Yu, Y., … Schmitt, C. A. (2017). Senescence-associated reprogramming promotes cancer stemness. Nature, 553(7686), 96-100. doi:10.1038/nature25167 es_ES
dc.description.references Parrinello, S., Coppe, J.-P., Krtolica, A., & Campisi, J. (2005). Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation. Journal of Cell Science, 118(3), 485-496. doi:10.1242/jcs.01635 es_ES
dc.description.references Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J., & Robbins, P. D. (2017). The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 65(10), 2297-2301. doi:10.1111/jgs.14969 es_ES
dc.description.references Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R.-M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718-735. doi:10.1038/nrd.2017.116 es_ES
dc.description.references Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0 es_ES
dc.description.references Zhu, Y., Tchkonia, T., Fuhrmann‐Stroissnigg, H., Dai, H. M., Ling, Y. Y., Stout, M. B., … Kirkland, J. L. (2016). Identification of a novel senolytic agent, navitoclax, targeting the Bcl‐2 family of anti‐apoptotic factors. Aging Cell, 15(3), 428-435. doi:10.1111/acel.12445 es_ES
dc.description.references Baar, M. P., Brandt, R. M. C., Putavet, D. A., Klein, J. D. D., Derks, K. W. J., Bourgeois, B. R. M., … de Keizer, P. L. J. (2017). Targeted Apoptosis of Senescent Cells Restores Tissue Homeostasis in Response to Chemotoxicity and Aging. Cell, 169(1), 132-147.e16. doi:10.1016/j.cell.2017.02.031 es_ES
dc.description.references Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … Kirkland, J. L. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14(4), 644-658. doi:10.1111/acel.12344 es_ES
dc.description.references Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., … Zhou, D. (2015). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78-83. doi:10.1038/nm.4010 es_ES
dc.description.references Kile, B. T. (2014). The role of apoptosis in megakaryocytes and platelets. British Journal of Haematology, 165(2), 217-226. doi:10.1111/bjh.12757 es_ES
dc.description.references Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456 es_ES
dc.description.references Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j es_ES
dc.description.references Su, Y.-L., & Hu, S.-H. (2018). Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics, 10(4), 193. doi:10.3390/pharmaceutics10040193 es_ES
dc.description.references Giménez, C., de la Torre, C., Gorbe, M., Aznar, E., Sancenón, F., Murguía, J. R., … Amorós, P. (2015). Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 31(12), 3753-3762. doi:10.1021/acs.langmuir.5b00139 es_ES
dc.description.references Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663 es_ES
dc.description.references Bernardos, A., Mondragón, L., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Amorós, P. (2010). Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with «Saccharides». ACS Nano, 4(11), 6353-6368. doi:10.1021/nn101499d es_ES
dc.description.references Kaur, P., Nagaraja, G. M., Zheng, H., Gizachew, D., Galukande, M., Krishnan, S., & Asea, A. (2012). A mouse model for triple-negative breast cancer tumor-initiating cells (TNBC-TICs) exhibits similar aggressive phenotype to the human disease. BMC Cancer, 12(1). doi:10.1186/1471-2407-12-120 es_ES
dc.description.references Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-Negative Breast Cancer. New England Journal of Medicine, 363(20), 1938-1948. doi:10.1056/nejmra1001389 es_ES
dc.description.references Collado, M., & Serrano, M. (2010). Senescence in tumours: evidence from mice and humans. Nature Reviews Cancer, 10(1), 51-57. doi:10.1038/nrc2772 es_ES
dc.description.references Goel, S., DeCristo, M. J., Watt, A. C., BrinJones, H., Sceneay, J., Li, B. B., … Zhao, J. J. (2017). CDK4/6 inhibition triggers anti-tumour immunity. Nature, 548(7668), 471-475. doi:10.1038/nature23465 es_ES
dc.description.references Asghar, U. S., Barr, A. R., Cutts, R., Beaney, M., Babina, I., Sampath, D., … Turner, N. C. (2017). Single-Cell Dynamics Determines Response to CDK4/6 Inhibition in Triple-Negative Breast Cancer. Clinical Cancer Research, 23(18), 5561-5572. doi:10.1158/1078-0432.ccr-17-0369 es_ES
dc.description.references Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., … Hwang, E. S. (2006). Senescence-associated β-galactosidase is lysosomal β-galactosidase. Aging Cell, 5(2), 187-195. doi:10.1111/j.1474-9726.2006.00199.x es_ES
dc.description.references Potter, D. S., & Letai, A. (2016). To Prime, or Not to Prime: That Is the Question. Cold Spring Harbor Symposia on Quantitative Biology, 81, 131-140. doi:10.1101/sqb.2016.81.030841 es_ES
dc.description.references Billard, C. (2013). BH3 Mimetics: Status of the Field and New Developments. Molecular Cancer Therapeutics, 12(9), 1691-1700. doi:10.1158/1535-7163.mct-13-0058 es_ES
dc.description.references Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., & Chen, L. B. (1995). [29] Mitochondrial membrane potential monitored by JC-1 dye. Mitochondrial Biogenesis and Genetics Part A, 406-417. doi:10.1016/0076-6879(95)60154-6 es_ES
dc.description.references Sugrue, M. M., Wang, Y., Rideout, H. J., Chalmers-Redman, R. M. E., & Tatton, W. G. (1999). Reduced Mitochondrial Membrane Potential and Altered Responsiveness of a Mitochondrial Membrane Megachannel in p53-Induced Senescence. Biochemical and Biophysical Research Communications, 261(1), 123-130. doi:10.1006/bbrc.1999.0984 es_ES
dc.description.references Wang, D., Liu, Y., Zhang, R., Zhang, F., Sui, W., Chen, L., … Ji, J. (2016). Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget, 7(19), 28286-28300. doi:10.18632/oncotarget.8536 es_ES
dc.description.references Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., … Serrano, M. (2005). Senescence in premalignant tumours. Nature, 436(7051), 642-642. doi:10.1038/436642a es_ES
dc.description.references Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., … van Deursen, J. M. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232-236. doi:10.1038/nature10600 es_ES
dc.description.references Jaskelioff, M., Muller, F. L., Paik, J.-H., Thomas, E., Jiang, S., Adams, A. C., … DePinho, R. A. (2010). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102-106. doi:10.1038/nature09603 es_ES
dc.description.references Lehmann, M., Korfei, M., Mutze, K., Klee, S., Skronska-Wasek, W., Alsafadi, H. N., … Königshoff, M. (2017). Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosisex vivo. European Respiratory Journal, 50(2), 1602367. doi:10.1183/13993003.02367-2016 es_ES
dc.description.references Schafer, M. J., White, T. A., Iijima, K., Haak, A. J., Ligresti, G., Atkinson, E. J., … LeBrasseur, N. K. (2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications, 8(1). doi:10.1038/ncomms14532 es_ES
dc.description.references Hecker, L., Logsdon, N. J., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., … Thannickal, V. J. (2014). Reversal of Persistent Fibrosis in Aging by Targeting Nox4-Nrf2 Redox Imbalance. Science Translational Medicine, 6(231). doi:10.1126/scitranslmed.3008182 es_ES
dc.description.references Sanders, Y. Y., Liu, H., Liu, G., & Thannickal, V. J. (2015). Epigenetic mechanisms regulate NADPH oxidase-4 expression in cellular senescence. Free Radical Biology and Medicine, 79, 197-205. doi:10.1016/j.freeradbiomed.2014.12.008 es_ES
dc.description.references Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004 es_ES
dc.description.references Burd, C. E., Sorrentino, J. A., Clark, K. S., Darr, D. B., Krishnamurthy, J., Deal, A. M., … Sharpless, N. E. (2013). Monitoring Tumorigenesis and Senescence In Vivo with a p16INK4a-Luciferase Model. Cell, 152(1-2), 340-351. doi:10.1016/j.cell.2012.12.010 es_ES
dc.description.references Correia-Melo, C., & Passos, J. F. (2015). Mitochondria: Are they causal players in cellular senescence? Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1847(11), 1373-1379. doi:10.1016/j.bbabio.2015.05.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem