- -

Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results

Mostrar el registro completo del ítem

Torregrosa Martin, C.; Perillo-Marcone, A.; Calviani, M.; Gentini, L.; Butcher, M.; Muñoz-Cobo González, JL. (2019). Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results. Physical Review Special Topics: Accelerators and Beams. 22(1):1-16. https://doi.org/10.1103/PhysRevAccelBeams.22.013401

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161602

Ficheros en el ítem

Metadatos del ítem

Título: Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results
Autor: Torregrosa Martin, Claudio Perillo-Marcone, Antonio Calviani, Marco Gentini, Luca Butcher, Mark Muñoz-Cobo González, José Luís
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The HRMT27-RodTarg experiment employed the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods 8 mm in diameter, 140 mm in length, and made of high-density materials such as Ir, W, Ta, Mo, ...[+]
Palabras clave: CERN antiproton target material , Imaterial damage by irradiation , Antiproton production target , Hydrocode calculation of antiproton production target , Impact beam experiments with refractory metals
Derechos de uso: Reconocimiento (by)
Fuente:
Physical Review Special Topics: Accelerators and Beams. (issn: 1098-4402 )
DOI: 10.1103/PhysRevAccelBeams.22.013401
Editorial:
American Physical Society
Versión del editor: https://doi.org/10.1103/PhysRevAccelBeams.22.013401
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/312453/EU/Enhanced European Coordination for Accelerator Research & Development/
Agradecimientos:
The authors express their gratitude to the HiRadMat facility for its invaluable support during the design and execution of the experiment as well as to all the CERN groups involved, such as BE/OP/SPS, BE/BI/PM, HSE/RP/AS, ...[+]
Tipo: Artículo

References

Möhl, D. (1997). Hyperfine Interactions, 109(1/4), 33-41. doi:10.1023/a:1012680728257

Martin, C. T., Perillo-Marcone, A., Calviani, M., & Muñoz-Cobo, J.-L. (2016). CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Physical Review Accelerators and Beams, 19(7). doi:10.1103/physrevaccelbeams.19.073402

Rieth, M., Boutard, J. L., Dudarev, S. L., Ahlgren, T., Antusch, S., Baluc, N., … Correia, J. B. (2011). Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 417(1-3), 463-467. doi:10.1016/j.jnucmat.2011.01.075 [+]
Möhl, D. (1997). Hyperfine Interactions, 109(1/4), 33-41. doi:10.1023/a:1012680728257

Martin, C. T., Perillo-Marcone, A., Calviani, M., & Muñoz-Cobo, J.-L. (2016). CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Physical Review Accelerators and Beams, 19(7). doi:10.1103/physrevaccelbeams.19.073402

Rieth, M., Boutard, J. L., Dudarev, S. L., Ahlgren, T., Antusch, S., Baluc, N., … Correia, J. B. (2011). Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 417(1-3), 463-467. doi:10.1016/j.jnucmat.2011.01.075

Nemat-Nasser, S., Isaacs, J. B., & Liu, M. (1998). Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Materialia, 46(4), 1307-1325. doi:10.1016/s1359-6454(97)00746-5

Thissell, W. R. (2004). Dynamic Failure Resistance of Two Tantalum Materials with Different Melt Practice Sequences. AIP Conference Proceedings. doi:10.1063/1.1780285

Razorenov, S. V., Garkushin, G., Kanel, G. I., & Ignatova, O. N. (2012). The spall strength and Hugoniot elastic limit of tantalum with various grain size. doi:10.1063/1.3686444

Torregrosa Martin, C., Calviani, M., Perillo-Marcone, A., Ferriere, R., Solieri, N., Butcher, M., … Espadanal, J. C. (2018). Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: Design, manufacturing, and testing under proton beam impacts. Physical Review Accelerators and Beams, 21(7). doi:10.1103/physrevaccelbeams.21.073001

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem