- -

Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa Martin, Claudio es_ES
dc.contributor.author Perillo-Marcone, Antonio es_ES
dc.contributor.author Calviani, Marco es_ES
dc.contributor.author Gentini, Luca es_ES
dc.contributor.author Butcher, Mark es_ES
dc.contributor.author Muñoz-Cobo González, José Luís es_ES
dc.date.accessioned 2021-02-17T04:32:04Z
dc.date.available 2021-02-17T04:32:04Z
dc.date.issued 2019-01-07 es_ES
dc.identifier.issn 1098-4402 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161602
dc.description.abstract [EN] The HRMT27-RodTarg experiment employed the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods 8 mm in diameter, 140 mm in length, and made of high-density materials such as Ir, W, Ta, Mo, and alloys. The purpose of the experiment was to reduce uncertainties on the CERN antiproton target material response and assess the material selection for its future redesign. The experiment was designed to recreate the extreme conditions reached in the production target, estimated in an increase of temperature above 2000 degrees C in less than 0.5 mu s and a subsequent compressive-to-tensile pressure wave of several gigapascals. The goals of the experiment were (i) to validate the hydrocode calculations used for the prediction of the antiproton target response and (ii) to identify limits and failure mechanisms of the materials of interest. In order to accomplish these objectives, the experiment relied on extensive instrumentation (pointing at the target rod surfaces). This paper presents a detailed description of the experiment as well as the recorded online results which showed that most of the investigated materials suffered internal damage from conditions 5-7 times below the ones present in the AD target. Tantalum, on the other hand, apparently withstood the most extreme conditions without presenting internal cracking. es_ES
dc.description.sponsorship The authors express their gratitude to the HiRadMat facility for its invaluable support during the design and execution of the experiment as well as to all the CERN groups involved, such as BE/OP/SPS, BE/BI/PM, HSE/RP/AS, and EN/MME. In addition, the authors thank CERN's Accelerator Consolidation (ACC-CONS) Project, which financed this work, as well as the funding received through the EuCARD2 FP7 program (Grant Agreement No. 312453) in the context of the HiRadMat facility. Finally, the authors are grateful to Anna Lambert and Louisa Catherall for the English proofreading of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Special Topics: Accelerators and Beams es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CERN antiproton target material es_ES
dc.subject Imaterial damage by irradiation es_ES
dc.subject Antiproton production target es_ES
dc.subject Hydrocode calculation of antiproton production target es_ES
dc.subject Impact beam experiments with refractory metals es_ES
dc.subject.classification INGENIERIA NUCLEAR es_ES
dc.title Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevAccelBeams.22.013401 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/312453/EU/Enhanced European Coordination for Accelerator Research & Development/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Torregrosa Martin, C.; Perillo-Marcone, A.; Calviani, M.; Gentini, L.; Butcher, M.; Muñoz-Cobo González, JL. (2019). Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results. Physical Review Special Topics: Accelerators and Beams. 22(1):1-16. https://doi.org/10.1103/PhysRevAccelBeams.22.013401 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1103/PhysRevAccelBeams.22.013401 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\408264 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Möhl, D. (1997). Hyperfine Interactions, 109(1/4), 33-41. doi:10.1023/a:1012680728257 es_ES
dc.description.references Martin, C. T., Perillo-Marcone, A., Calviani, M., & Muñoz-Cobo, J.-L. (2016). CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Physical Review Accelerators and Beams, 19(7). doi:10.1103/physrevaccelbeams.19.073402 es_ES
dc.description.references Rieth, M., Boutard, J. L., Dudarev, S. L., Ahlgren, T., Antusch, S., Baluc, N., … Correia, J. B. (2011). Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 417(1-3), 463-467. doi:10.1016/j.jnucmat.2011.01.075 es_ES
dc.description.references Nemat-Nasser, S., Isaacs, J. B., & Liu, M. (1998). Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Materialia, 46(4), 1307-1325. doi:10.1016/s1359-6454(97)00746-5 es_ES
dc.description.references Thissell, W. R. (2004). Dynamic Failure Resistance of Two Tantalum Materials with Different Melt Practice Sequences. AIP Conference Proceedings. doi:10.1063/1.1780285 es_ES
dc.description.references Razorenov, S. V., Garkushin, G., Kanel, G. I., & Ignatova, O. N. (2012). The spall strength and Hugoniot elastic limit of tantalum with various grain size. doi:10.1063/1.3686444 es_ES
dc.description.references Torregrosa Martin, C., Calviani, M., Perillo-Marcone, A., Ferriere, R., Solieri, N., Butcher, M., … Espadanal, J. C. (2018). Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: Design, manufacturing, and testing under proton beam impacts. Physical Review Accelerators and Beams, 21(7). doi:10.1103/physrevaccelbeams.21.073001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem