Mostrar el registro sencillo del ítem
dc.contributor.author | Torregrosa Martin, Claudio | es_ES |
dc.contributor.author | Perillo-Marcone, Antonio | es_ES |
dc.contributor.author | Calviani, Marco | es_ES |
dc.contributor.author | Gentini, Luca | es_ES |
dc.contributor.author | Butcher, Mark | es_ES |
dc.contributor.author | Muñoz-Cobo González, José Luís | es_ES |
dc.date.accessioned | 2021-02-17T04:32:04Z | |
dc.date.available | 2021-02-17T04:32:04Z | |
dc.date.issued | 2019-01-07 | es_ES |
dc.identifier.issn | 1098-4402 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161602 | |
dc.description.abstract | [EN] The HRMT27-RodTarg experiment employed the HiRadMat facility at CERN to impact intense 440 GeV proton beams onto thin rods 8 mm in diameter, 140 mm in length, and made of high-density materials such as Ir, W, Ta, Mo, and alloys. The purpose of the experiment was to reduce uncertainties on the CERN antiproton target material response and assess the material selection for its future redesign. The experiment was designed to recreate the extreme conditions reached in the production target, estimated in an increase of temperature above 2000 degrees C in less than 0.5 mu s and a subsequent compressive-to-tensile pressure wave of several gigapascals. The goals of the experiment were (i) to validate the hydrocode calculations used for the prediction of the antiproton target response and (ii) to identify limits and failure mechanisms of the materials of interest. In order to accomplish these objectives, the experiment relied on extensive instrumentation (pointing at the target rod surfaces). This paper presents a detailed description of the experiment as well as the recorded online results which showed that most of the investigated materials suffered internal damage from conditions 5-7 times below the ones present in the AD target. Tantalum, on the other hand, apparently withstood the most extreme conditions without presenting internal cracking. | es_ES |
dc.description.sponsorship | The authors express their gratitude to the HiRadMat facility for its invaluable support during the design and execution of the experiment as well as to all the CERN groups involved, such as BE/OP/SPS, BE/BI/PM, HSE/RP/AS, and EN/MME. In addition, the authors thank CERN's Accelerator Consolidation (ACC-CONS) Project, which financed this work, as well as the funding received through the EuCARD2 FP7 program (Grant Agreement No. 312453) in the context of the HiRadMat facility. Finally, the authors are grateful to Anna Lambert and Louisa Catherall for the English proofreading of this manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Physical Society | es_ES |
dc.relation.ispartof | Physical Review Special Topics: Accelerators and Beams | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | CERN antiproton target material | es_ES |
dc.subject | Imaterial damage by irradiation | es_ES |
dc.subject | Antiproton production target | es_ES |
dc.subject | Hydrocode calculation of antiproton production target | es_ES |
dc.subject | Impact beam experiments with refractory metals | es_ES |
dc.subject.classification | INGENIERIA NUCLEAR | es_ES |
dc.title | Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1103/PhysRevAccelBeams.22.013401 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/312453/EU/Enhanced European Coordination for Accelerator Research & Development/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.description.bibliographicCitation | Torregrosa Martin, C.; Perillo-Marcone, A.; Calviani, M.; Gentini, L.; Butcher, M.; Muñoz-Cobo González, JL. (2019). Experiment exposing refractory metals to impacts of 440 GeV/c proton beams for the future design of the CERN antiproton production target: Experiment design and online results. Physical Review Special Topics: Accelerators and Beams. 22(1):1-16. https://doi.org/10.1103/PhysRevAccelBeams.22.013401 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1103/PhysRevAccelBeams.22.013401 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\408264 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Möhl, D. (1997). Hyperfine Interactions, 109(1/4), 33-41. doi:10.1023/a:1012680728257 | es_ES |
dc.description.references | Martin, C. T., Perillo-Marcone, A., Calviani, M., & Muñoz-Cobo, J.-L. (2016). CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact. Physical Review Accelerators and Beams, 19(7). doi:10.1103/physrevaccelbeams.19.073402 | es_ES |
dc.description.references | Rieth, M., Boutard, J. L., Dudarev, S. L., Ahlgren, T., Antusch, S., Baluc, N., … Correia, J. B. (2011). Review on the EFDA programme on tungsten materials technology and science. Journal of Nuclear Materials, 417(1-3), 463-467. doi:10.1016/j.jnucmat.2011.01.075 | es_ES |
dc.description.references | Nemat-Nasser, S., Isaacs, J. B., & Liu, M. (1998). Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Materialia, 46(4), 1307-1325. doi:10.1016/s1359-6454(97)00746-5 | es_ES |
dc.description.references | Thissell, W. R. (2004). Dynamic Failure Resistance of Two Tantalum Materials with Different Melt Practice Sequences. AIP Conference Proceedings. doi:10.1063/1.1780285 | es_ES |
dc.description.references | Razorenov, S. V., Garkushin, G., Kanel, G. I., & Ignatova, O. N. (2012). The spall strength and Hugoniot elastic limit of tantalum with various grain size. doi:10.1063/1.3686444 | es_ES |
dc.description.references | Torregrosa Martin, C., Calviani, M., Perillo-Marcone, A., Ferriere, R., Solieri, N., Butcher, M., … Espadanal, J. C. (2018). Scaled prototype of a tantalum target embedded in expanded graphite for antiproton production: Design, manufacturing, and testing under proton beam impacts. Physical Review Accelerators and Beams, 21(7). doi:10.1103/physrevaccelbeams.21.073001 | es_ES |