- -

Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia

Mostrar el registro completo del ítem

Dufilho, A.; Falco, S. (2020). Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia. Journal of Contaminant Hydrology. 229:1-12. https://doi.org/10.1016/j.jconhyd.2019.103584

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161603

Ficheros en el ítem

Metadatos del ítem

Título: Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia
Autor: Dufilho, A.C. Falco, S.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] An analysis was made of the transport and fate of the organophosphate pesticide chlorpyrifos in productive soils from the Alto Valle of the Rio Negro in Argentine Patagonia. The climate of the region is arid, so ...[+]
Palabras clave: MACRO model , Macropore , Pesticide , Solute transport , Organophosphate , Water quality
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Contaminant Hydrology. (issn: 0169-7722 )
DOI: 10.1016/j.jconhyd.2019.103584
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jconhyd.2019.103584
Agradecimientos:
This work was partially supported by PROFITE 2013 (Ministerio de Education de la Nation, Argentina). The authors would like to thank the fruit producers of the Alto Valle of the Rio Negro, the staff of the LIBIQUIMA ...[+]
Tipo: Artículo

References

ALAOUI, A., GERMANN, P., JARVIS, N., & ACUTIS, M. (2003). Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 48(3), 455-472. doi:10.1623/hysj.48.3.455.45289

Allaire, S. E., Roulier, S., & Cessna, A. J. (2009). Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1-2), 179-204. doi:10.1016/j.jhydrol.2009.08.013

Besien, T. J., Jarvis, N. J., & Williams, R. J. (1997). Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrology and Earth System Sciences, 1(4), 835-844. doi:10.5194/hess-1-835-1997 [+]
ALAOUI, A., GERMANN, P., JARVIS, N., & ACUTIS, M. (2003). Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 48(3), 455-472. doi:10.1623/hysj.48.3.455.45289

Allaire, S. E., Roulier, S., & Cessna, A. J. (2009). Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1-2), 179-204. doi:10.1016/j.jhydrol.2009.08.013

Besien, T. J., Jarvis, N. J., & Williams, R. J. (1997). Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrology and Earth System Sciences, 1(4), 835-844. doi:10.5194/hess-1-835-1997

Beven, K., & Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. doi:10.1002/wrcr.20156

Clothier, B. E., & Smettem, K. R. J. (1990). Combining Laboratory and Field Measurements to Define the Hydraulic Properties of Soil. Soil Science Society of America Journal, 54(2), 299-304. doi:10.2136/sssaj1990.03615995005400020001x

Dubus, I. G., & Brown, C. D. (2002). Sensitivity and First-Step Uncertainty Analyses for the Preferential Flow Model MACRO. Journal of Environmental Quality, 31(1), 227-240. doi:10.2134/jeq2002.2270

Dubus, I. G., Brown, C. D., & Beulke, S. (2003). Sensitivity analyses for four pesticide leaching models. Pest Management Science, 59(9), 962-982. doi:10.1002/ps.723

Flury, M. (1996). Experimental Evidence of Transport of Pesticides through Field Soils—A Review. Journal of Environmental Quality, 25(1), 25-45. doi:10.2134/jeq1996.00472425002500010005x

Flury, M., & Wai, N. N. (2003). Dyes as tracers for vadose zone hydrology. Reviews of Geophysics, 41(1). doi:10.1029/2001rg000109

Flury, M., Flühler, H., Jury, W. A., & Leuenberger, J. (1994). Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30(7), 1945-1954. doi:10.1029/94wr00871

Gerke, H. H. (2006). Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169(3), 382-400. doi:10.1002/jpln.200521955

Giannouli, D. D., & Antonopoulos, V. Z. (2015). Evaluation of two pesticide leaching models in an irrigated field cropped with corn. Journal of Environmental Management, 150, 508-515. doi:10.1016/j.jenvman.2014.12.044

Gish, T. J., Kung, K.-J. S., Perry, D. C., Posner, J., Bubenzer, G., Helling, C. S., … Steenhuis, T. S. (2004). Impact of Preferential Flow at Varying Irrigation Rates by Quantifying Mass Fluxes. Journal of Environment Quality, 33(3), 1033. doi:10.2134/jeq2004.1033

Gustafson, D. I. (1989). Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8(4), 339-357. doi:10.1002/etc.5620080411

Jarvis, N. J. (1995). Simulation of soil water dynamics and herbicide persistence in a silt loam soil using the MACRO model. Ecological Modelling, 81(1-3), 97-109. doi:10.1016/0304-3800(94)00163-c

Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(3), 523-546. doi:10.1111/j.1365-2389.2007.00915.x

N. Jarvis, & M. Larsbo. (2012). MACRO (v5.2): Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1413-1423. doi:10.13031/2013.42251

Jarvis, N. J., & Messing, I. (1995). Near-Saturated Hydraulic Conductivity in Soils of Contrasting Texture Measured by Tension Infiltrometers. Soil Science Society of America Journal, 59(1), 27-34. doi:10.2136/sssaj1995.03615995005900010004x

Jarvis, N., Koestel, J., & Larsbo, M. (2016). Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone Journal, 15(12), vzj2016.09.0075. doi:10.2136/vzj2016.09.0075

Johnson, A. C., Worrall, F., White, C., Walker, A., Besien, T. J., & Williams, R. J. (1997). The potential of incorporated organic matter to reduce pesticide leaching. Toxicological & Environmental Chemistry, 58(1-4), 47-61. doi:10.1080/02772249709358397

Kätterer, T., Schmied, B., Abbaspour, K. C., & Schulin, R. (2001). Single- and dual-porosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application. European Journal of Soil Science, 52(1), 25-36. doi:10.1046/j.1365-2389.2001.00355.x

Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: a) Water flow and tracer transport. Journal of Contaminant Hydrology, 104(1-4), 4-35. doi:10.1016/j.jconhyd.2008.10.002

Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: b) Pesticide transport. Journal of Contaminant Hydrology, 104(1-4), 36-60. doi:10.1016/j.jconhyd.2008.10.003

Kramers, G., Richards, K. G., & Holden, N. M. (2009). Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma, 153(3-4), 362-371. doi:10.1016/j.geoderma.2009.08.021

Kuzmanovski, V., Trajanov, A., Leprince, F., Džeroski, S., & Debeljak, M. (2015). Modeling water outflow from tile-drained agricultural fields. Science of The Total Environment, 505, 390-401. doi:10.1016/j.scitotenv.2014.10.009

Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3

LOEWY, R., CARVAJAL, L., NOVELLI, M., & PECHEN DE D’ANGELO, A. (2006). Azinphos Methyl Residues in Shallow Groundwater from the Fruit Production Region of Northern Patagonia, Argentina. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 869-881. doi:10.1080/03601230600805956

Perillo, C. ., Gupta, S. ., Nater, E. ., & Moncrief, J. . (1999). Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma, 89(3-4), 307-331. doi:10.1016/s0016-7061(98)00087-1

Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50(4), 1031-1036. doi:10.2136/sssaj1986.03615995005000040039x

Šimůnek, J., Jarvis, N. J., van Genuchten, M. T., & Gärdenäs, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272(1-4), 14-35. doi:10.1016/s0022-1694(02)00252-4

Steenhuis, T. S., Bodnar, M., Geohring, L. D., Aburime, S.-A., & Wallach, R. (1997). A simple model for predicting solute concentration in agricultural tile lines shortly after application. Hydrology and Earth System Sciences, 1(4), 823-833. doi:10.5194/hess-1-823-1997

Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., & Pilch, M. (2006). Calibration, validation, and sensitivity analysis: What’s what. Reliability Engineering & System Safety, 91(10-11), 1331-1357. doi:10.1016/j.ress.2005.11.031

Wang, K., Zhang, R., & Hiroshi, Y. (2009). Characterizing heterogeneous soil water flow and solute transport using information measures. Journal of Hydrology, 370(1-4), 109-121. doi:10.1016/j.jhydrol.2009.02.057

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem