ALAOUI, A., GERMANN, P., JARVIS, N., & ACUTIS, M. (2003). Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 48(3), 455-472. doi:10.1623/hysj.48.3.455.45289
Allaire, S. E., Roulier, S., & Cessna, A. J. (2009). Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1-2), 179-204. doi:10.1016/j.jhydrol.2009.08.013
Besien, T. J., Jarvis, N. J., & Williams, R. J. (1997). Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrology and Earth System Sciences, 1(4), 835-844. doi:10.5194/hess-1-835-1997
[+]
ALAOUI, A., GERMANN, P., JARVIS, N., & ACUTIS, M. (2003). Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 48(3), 455-472. doi:10.1623/hysj.48.3.455.45289
Allaire, S. E., Roulier, S., & Cessna, A. J. (2009). Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1-2), 179-204. doi:10.1016/j.jhydrol.2009.08.013
Besien, T. J., Jarvis, N. J., & Williams, R. J. (1997). Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrology and Earth System Sciences, 1(4), 835-844. doi:10.5194/hess-1-835-1997
Beven, K., & Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. doi:10.1002/wrcr.20156
Clothier, B. E., & Smettem, K. R. J. (1990). Combining Laboratory and Field Measurements to Define the Hydraulic Properties of Soil. Soil Science Society of America Journal, 54(2), 299-304. doi:10.2136/sssaj1990.03615995005400020001x
Dubus, I. G., & Brown, C. D. (2002). Sensitivity and First-Step Uncertainty Analyses for the Preferential Flow Model MACRO. Journal of Environmental Quality, 31(1), 227-240. doi:10.2134/jeq2002.2270
Dubus, I. G., Brown, C. D., & Beulke, S. (2003). Sensitivity analyses for four pesticide leaching models. Pest Management Science, 59(9), 962-982. doi:10.1002/ps.723
Flury, M. (1996). Experimental Evidence of Transport of Pesticides through Field Soils—A Review. Journal of Environmental Quality, 25(1), 25-45. doi:10.2134/jeq1996.00472425002500010005x
Flury, M., & Wai, N. N. (2003). Dyes as tracers for vadose zone hydrology. Reviews of Geophysics, 41(1). doi:10.1029/2001rg000109
Flury, M., Flühler, H., Jury, W. A., & Leuenberger, J. (1994). Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30(7), 1945-1954. doi:10.1029/94wr00871
Gerke, H. H. (2006). Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169(3), 382-400. doi:10.1002/jpln.200521955
Giannouli, D. D., & Antonopoulos, V. Z. (2015). Evaluation of two pesticide leaching models in an irrigated field cropped with corn. Journal of Environmental Management, 150, 508-515. doi:10.1016/j.jenvman.2014.12.044
Gish, T. J., Kung, K.-J. S., Perry, D. C., Posner, J., Bubenzer, G., Helling, C. S., … Steenhuis, T. S. (2004). Impact of Preferential Flow at Varying Irrigation Rates by Quantifying Mass Fluxes. Journal of Environment Quality, 33(3), 1033. doi:10.2134/jeq2004.1033
Gustafson, D. I. (1989). Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8(4), 339-357. doi:10.1002/etc.5620080411
Jarvis, N. J. (1995). Simulation of soil water dynamics and herbicide persistence in a silt loam soil using the MACRO model. Ecological Modelling, 81(1-3), 97-109. doi:10.1016/0304-3800(94)00163-c
Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(3), 523-546. doi:10.1111/j.1365-2389.2007.00915.x
N. Jarvis, & M. Larsbo. (2012). MACRO (v5.2): Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1413-1423. doi:10.13031/2013.42251
Jarvis, N. J., & Messing, I. (1995). Near-Saturated Hydraulic Conductivity in Soils of Contrasting Texture Measured by Tension Infiltrometers. Soil Science Society of America Journal, 59(1), 27-34. doi:10.2136/sssaj1995.03615995005900010004x
Jarvis, N., Koestel, J., & Larsbo, M. (2016). Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone Journal, 15(12), vzj2016.09.0075. doi:10.2136/vzj2016.09.0075
Johnson, A. C., Worrall, F., White, C., Walker, A., Besien, T. J., & Williams, R. J. (1997). The potential of incorporated organic matter to reduce pesticide leaching. Toxicological & Environmental Chemistry, 58(1-4), 47-61. doi:10.1080/02772249709358397
Kätterer, T., Schmied, B., Abbaspour, K. C., & Schulin, R. (2001). Single- and dual-porosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application. European Journal of Soil Science, 52(1), 25-36. doi:10.1046/j.1365-2389.2001.00355.x
Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: a) Water flow and tracer transport. Journal of Contaminant Hydrology, 104(1-4), 4-35. doi:10.1016/j.jconhyd.2008.10.002
Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: b) Pesticide transport. Journal of Contaminant Hydrology, 104(1-4), 36-60. doi:10.1016/j.jconhyd.2008.10.003
Kramers, G., Richards, K. G., & Holden, N. M. (2009). Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma, 153(3-4), 362-371. doi:10.1016/j.geoderma.2009.08.021
Kuzmanovski, V., Trajanov, A., Leprince, F., Džeroski, S., & Debeljak, M. (2015). Modeling water outflow from tile-drained agricultural fields. Science of The Total Environment, 505, 390-401. doi:10.1016/j.scitotenv.2014.10.009
Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3
LOEWY, R., CARVAJAL, L., NOVELLI, M., & PECHEN DE D’ANGELO, A. (2006). Azinphos Methyl Residues in Shallow Groundwater from the Fruit Production Region of Northern Patagonia, Argentina. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 869-881. doi:10.1080/03601230600805956
Perillo, C. ., Gupta, S. ., Nater, E. ., & Moncrief, J. . (1999). Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma, 89(3-4), 307-331. doi:10.1016/s0016-7061(98)00087-1
Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50(4), 1031-1036. doi:10.2136/sssaj1986.03615995005000040039x
Šimůnek, J., Jarvis, N. J., van Genuchten, M. T., & Gärdenäs, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272(1-4), 14-35. doi:10.1016/s0022-1694(02)00252-4
Steenhuis, T. S., Bodnar, M., Geohring, L. D., Aburime, S.-A., & Wallach, R. (1997). A simple model for predicting solute concentration in agricultural tile lines shortly after application. Hydrology and Earth System Sciences, 1(4), 823-833. doi:10.5194/hess-1-823-1997
Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., & Pilch, M. (2006). Calibration, validation, and sensitivity analysis: What’s what. Reliability Engineering & System Safety, 91(10-11), 1331-1357. doi:10.1016/j.ress.2005.11.031
Wang, K., Zhang, R., & Hiroshi, Y. (2009). Characterizing heterogeneous soil water flow and solute transport using information measures. Journal of Hydrology, 370(1-4), 109-121. doi:10.1016/j.jhydrol.2009.02.057
[-]