- -

Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Dufilho, A.C. es_ES
dc.contributor.author Falco, S. es_ES
dc.date.accessioned 2021-02-17T04:32:06Z
dc.date.available 2021-02-17T04:32:06Z
dc.date.issued 2020-02 es_ES
dc.identifier.issn 0169-7722 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161603
dc.description.abstract [EN] An analysis was made of the transport and fate of the organophosphate pesticide chlorpyrifos in productive soils from the Alto Valle of the Rio Negro in Argentine Patagonia. The climate of the region is arid, so traditional fruit production is under flood irrigation. The soils in the floodplain are predominantly Aridisols with textures ranging from sandy loam to clay loam. The calibration was performed with water table data and chlorpyrifos concentration in the soil horizons. Field experiments made with Brilliant Blue FCF at the profile scale enabled the parametrisation of the dual-permeability model MACRO. The model calibration was evaluated by a comparison of observed and simulated data and statistics. The simulation of the groundwater table depth was satisfactory and the chlorpyrifos leaching revealed a different pattern in the two soil types studied. The sandy loam texture soil produced more percolation of irrigation water, but the clay loam soil produced greater leaching of chlorpyrifos under similar application conditions, presumably due to preferential flow under non-equilibrium conditions. Productive management alternatives to reduce leaching into the underlying unconfined aquifer were simulated. Among these, the incorporation of organic matter was the best alternative. es_ES
dc.description.sponsorship This work was partially supported by PROFITE 2013 (Ministerio de Education de la Nation, Argentina). The authors would like to thank the fruit producers of the Alto Valle of the Rio Negro, the staff of the LIBIQUIMA laboratory (Universidad Nacional del Comahue) and the anonymous reviewer for their comments and suggestions that substantially improved the manuscript. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Contaminant Hydrology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject MACRO model es_ES
dc.subject Macropore es_ES
dc.subject Pesticide es_ES
dc.subject Solute transport es_ES
dc.subject Organophosphate es_ES
dc.subject Water quality es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jconhyd.2019.103584 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Dufilho, A.; Falco, S. (2020). Preferential flow modelling of chlorpyrifos leaching in two arid soils of irrigated agricultural production areas in Argentine Patagonia. Journal of Contaminant Hydrology. 229:1-12. https://doi.org/10.1016/j.jconhyd.2019.103584 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jconhyd.2019.103584 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 229 es_ES
dc.identifier.pmid 31837771 es_ES
dc.relation.pasarela S\405078 es_ES
dc.contributor.funder Ministerio de Educación, Argentina es_ES
dc.description.references ALAOUI, A., GERMANN, P., JARVIS, N., & ACUTIS, M. (2003). Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil. Hydrological Sciences Journal, 48(3), 455-472. doi:10.1623/hysj.48.3.455.45289 es_ES
dc.description.references Allaire, S. E., Roulier, S., & Cessna, A. J. (2009). Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1-2), 179-204. doi:10.1016/j.jhydrol.2009.08.013 es_ES
dc.description.references Besien, T. J., Jarvis, N. J., & Williams, R. J. (1997). Simulation of water movement and isoproturon behaviour in a heavy clay soil using the MACRO model. Hydrology and Earth System Sciences, 1(4), 835-844. doi:10.5194/hess-1-835-1997 es_ES
dc.description.references Beven, K., & Germann, P. (2013). Macropores and water flow in soils revisited. Water Resources Research, 49(6), 3071-3092. doi:10.1002/wrcr.20156 es_ES
dc.description.references Clothier, B. E., & Smettem, K. R. J. (1990). Combining Laboratory and Field Measurements to Define the Hydraulic Properties of Soil. Soil Science Society of America Journal, 54(2), 299-304. doi:10.2136/sssaj1990.03615995005400020001x es_ES
dc.description.references Dubus, I. G., & Brown, C. D. (2002). Sensitivity and First-Step Uncertainty Analyses for the Preferential Flow Model MACRO. Journal of Environmental Quality, 31(1), 227-240. doi:10.2134/jeq2002.2270 es_ES
dc.description.references Dubus, I. G., Brown, C. D., & Beulke, S. (2003). Sensitivity analyses for four pesticide leaching models. Pest Management Science, 59(9), 962-982. doi:10.1002/ps.723 es_ES
dc.description.references Flury, M. (1996). Experimental Evidence of Transport of Pesticides through Field Soils—A Review. Journal of Environmental Quality, 25(1), 25-45. doi:10.2134/jeq1996.00472425002500010005x es_ES
dc.description.references Flury, M., & Wai, N. N. (2003). Dyes as tracers for vadose zone hydrology. Reviews of Geophysics, 41(1). doi:10.1029/2001rg000109 es_ES
dc.description.references Flury, M., Flühler, H., Jury, W. A., & Leuenberger, J. (1994). Susceptibility of soils to preferential flow of water: A field study. Water Resources Research, 30(7), 1945-1954. doi:10.1029/94wr00871 es_ES
dc.description.references Gerke, H. H. (2006). Preferential flow descriptions for structured soils. Journal of Plant Nutrition and Soil Science, 169(3), 382-400. doi:10.1002/jpln.200521955 es_ES
dc.description.references Giannouli, D. D., & Antonopoulos, V. Z. (2015). Evaluation of two pesticide leaching models in an irrigated field cropped with corn. Journal of Environmental Management, 150, 508-515. doi:10.1016/j.jenvman.2014.12.044 es_ES
dc.description.references Gish, T. J., Kung, K.-J. S., Perry, D. C., Posner, J., Bubenzer, G., Helling, C. S., … Steenhuis, T. S. (2004). Impact of Preferential Flow at Varying Irrigation Rates by Quantifying Mass Fluxes. Journal of Environment Quality, 33(3), 1033. doi:10.2134/jeq2004.1033 es_ES
dc.description.references Gustafson, D. I. (1989). Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8(4), 339-357. doi:10.1002/etc.5620080411 es_ES
dc.description.references Jarvis, N. J. (1995). Simulation of soil water dynamics and herbicide persistence in a silt loam soil using the MACRO model. Ecological Modelling, 81(1-3), 97-109. doi:10.1016/0304-3800(94)00163-c es_ES
dc.description.references Jarvis, N. J. (2007). A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(3), 523-546. doi:10.1111/j.1365-2389.2007.00915.x es_ES
dc.description.references N. Jarvis, & M. Larsbo. (2012). MACRO (v5.2): Model Use, Calibration, and Validation. Transactions of the ASABE, 55(4), 1413-1423. doi:10.13031/2013.42251 es_ES
dc.description.references Jarvis, N. J., & Messing, I. (1995). Near-Saturated Hydraulic Conductivity in Soils of Contrasting Texture Measured by Tension Infiltrometers. Soil Science Society of America Journal, 59(1), 27-34. doi:10.2136/sssaj1995.03615995005900010004x es_ES
dc.description.references Jarvis, N., Koestel, J., & Larsbo, M. (2016). Understanding Preferential Flow in the Vadose Zone: Recent Advances and Future Prospects. Vadose Zone Journal, 15(12), vzj2016.09.0075. doi:10.2136/vzj2016.09.0075 es_ES
dc.description.references Johnson, A. C., Worrall, F., White, C., Walker, A., Besien, T. J., & Williams, R. J. (1997). The potential of incorporated organic matter to reduce pesticide leaching. Toxicological & Environmental Chemistry, 58(1-4), 47-61. doi:10.1080/02772249709358397 es_ES
dc.description.references Kätterer, T., Schmied, B., Abbaspour, K. C., & Schulin, R. (2001). Single- and dual-porosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application. European Journal of Soil Science, 52(1), 25-36. doi:10.1046/j.1365-2389.2001.00355.x es_ES
dc.description.references Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: a) Water flow and tracer transport. Journal of Contaminant Hydrology, 104(1-4), 4-35. doi:10.1016/j.jconhyd.2008.10.002 es_ES
dc.description.references Köhne, J. M., Köhne, S., & Šimůnek, J. (2009). A review of model applications for structured soils: b) Pesticide transport. Journal of Contaminant Hydrology, 104(1-4), 36-60. doi:10.1016/j.jconhyd.2008.10.003 es_ES
dc.description.references Kramers, G., Richards, K. G., & Holden, N. M. (2009). Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma, 153(3-4), 362-371. doi:10.1016/j.geoderma.2009.08.021 es_ES
dc.description.references Kuzmanovski, V., Trajanov, A., Leprince, F., Džeroski, S., & Debeljak, M. (2015). Modeling water outflow from tile-drained agricultural fields. Science of The Total Environment, 505, 390-401. doi:10.1016/j.scitotenv.2014.10.009 es_ES
dc.description.references Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7(1-2), 51-73. doi:10.1016/0169-7722(91)90038-3 es_ES
dc.description.references LOEWY, R., CARVAJAL, L., NOVELLI, M., & PECHEN DE D’ANGELO, A. (2006). Azinphos Methyl Residues in Shallow Groundwater from the Fruit Production Region of Northern Patagonia, Argentina. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 41(6), 869-881. doi:10.1080/03601230600805956 es_ES
dc.description.references Perillo, C. ., Gupta, S. ., Nater, E. ., & Moncrief, J. . (1999). Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon. Geoderma, 89(3-4), 307-331. doi:10.1016/s0016-7061(98)00087-1 es_ES
dc.description.references Saxton, K. E., Rawls, W. J., Romberger, J. S., & Papendick, R. I. (1986). Estimating Generalized Soil-water Characteristics from Texture. Soil Science Society of America Journal, 50(4), 1031-1036. doi:10.2136/sssaj1986.03615995005000040039x es_ES
dc.description.references Šimůnek, J., Jarvis, N. J., van Genuchten, M. T., & Gärdenäs, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. Journal of Hydrology, 272(1-4), 14-35. doi:10.1016/s0022-1694(02)00252-4 es_ES
dc.description.references Steenhuis, T. S., Bodnar, M., Geohring, L. D., Aburime, S.-A., & Wallach, R. (1997). A simple model for predicting solute concentration in agricultural tile lines shortly after application. Hydrology and Earth System Sciences, 1(4), 823-833. doi:10.5194/hess-1-823-1997 es_ES
dc.description.references Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., & Pilch, M. (2006). Calibration, validation, and sensitivity analysis: What’s what. Reliability Engineering & System Safety, 91(10-11), 1331-1357. doi:10.1016/j.ress.2005.11.031 es_ES
dc.description.references Wang, K., Zhang, R., & Hiroshi, Y. (2009). Characterizing heterogeneous soil water flow and solute transport using information measures. Journal of Hydrology, 370(1-4), 109-121. doi:10.1016/j.jhydrol.2009.02.057 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem