- -

Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election

Show full item record

Romero, R.; Pavía, JM.; Martín Marín, J.; Romero, G. (2020). Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election. Journal of Applied Statistics. 47(13-15):2711-2736. https://doi.org/10.1080/02664763.2020.1804842

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161604

Files in this item

Item Metadata

Title: Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election
Author: Romero, Rafael Pavía, Jose M. Martín Marín, Jorge Romero, Gerardo
UPV Unit: Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Embargo end date: 2021-11-17
Abstract:
[EN] Inferring electoral individual behaviour from aggregated data is a very active research area, with ramifications in sociology and political science. A new approach based on linear programming is proposed to estimate ...[+]
Subjects: Ecological inference , Linear programming , Voter transitions , R x C contingency tables , French elections
Copyrigths: Embargado
Source:
Journal of Applied Statistics. (issn: 0266-4763 )
DOI: 10.1080/02664763.2020.1804842
Publisher:
Taylor & Francis
Publisher version: https://doi.org/10.1080/02664763.2020.1804842
Project ID:
MICINN/ECO2017-87245-R
GV/AICO/2019/053
Thanks:
This piece of research has been supported by the Spanish Ministry of Science, Innovation and Universities and the Spanish Agency of Research, co-funded with FEDER funds, grant ECO2017-87245-R, and by Consellería d'Innovació, ...[+]
Type: Artículo

This item appears in the following Collection(s)

Show full item record