Mostrar el registro sencillo del ítem
dc.contributor.author | Romero, Rafael | es_ES |
dc.contributor.author | Pavía, Jose M. | es_ES |
dc.contributor.author | Martín Marín, Jorge | es_ES |
dc.contributor.author | Romero, Gerardo | es_ES |
dc.date.accessioned | 2021-02-17T04:32:09Z | |
dc.date.available | 2021-02-17T04:32:09Z | |
dc.date.issued | 2020-11-17 | es_ES |
dc.identifier.issn | 0266-4763 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161604 | |
dc.description.abstract | [EN] Inferring electoral individual behaviour from aggregated data is a very active research area, with ramifications in sociology and political science. A new approach based on linear programming is proposed to estimate voter transitions among parties (or candidates) between two elections. Compared to other linear and quadratic programming models previously published, our approach presents two important innovations. Firstly, it explicitly deals with new entries and exits in the election census without assuming unrealistic hypotheses, enabling a reasonable estimation of vote behaviour of young electors voting for the first time. Secondly, by exploiting the information contained in the model residuals, we develop a procedure to assess the uncertainty in the estimates. This significantly distinguishes our model from other published mathematical programming methods. The method is illustrated estimating the vote transfer matrix between the first and second rounds of the 2017 French presidential election and measuring its level of uncertainty. Likewise, compared to the most current alternatives based on ecological regression, our approach is considerably simpler and faster, and has provided reasonable results in all the actual elections to which it has been applied. Interested scholars can easily use our procedure with the aid of the R-function provided in the Supplemental Material. | es_ES |
dc.description.sponsorship | This piece of research has been supported by the Spanish Ministry of Science, Innovation and Universities and the Spanish Agency of Research, co-funded with FEDER funds, grant ECO2017-87245-R, and by Consellería d'Innovació, Universitats, Ciència i Societat Digital, Generalitat Valenciana, grant AICO/2019/053. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Applied Statistics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Ecological inference | es_ES |
dc.subject | Linear programming | es_ES |
dc.subject | Voter transitions | es_ES |
dc.subject | R x C contingency tables | es_ES |
dc.subject | French elections | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/02664763.2020.1804842 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ECO2017-87245-R/ES/INNOVACION SOCIAL Y ECONOMICA, DESCIFRANDO LA FUNCION DE LA CULTURA Y LA COMUNICACION./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F053/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | Romero, R.; Pavía, JM.; Martín Marín, J.; Romero, G. (2020). Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election. Journal of Applied Statistics. 47(13-15):2711-2736. https://doi.org/10.1080/02664763.2020.1804842 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/02664763.2020.1804842 | es_ES |
dc.description.upvformatpinicio | 2711 | es_ES |
dc.description.upvformatpfin | 2736 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 47 | es_ES |
dc.description.issue | 13-15 | es_ES |
dc.relation.pasarela | S\420185 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.description.references | U. Baydoğan, Vote transitions analysis and comparison of Turkish local elections in 2014 and 2019, Ph.D. diss., Mef University, 2019. | es_ES |
dc.description.references | M. Berkelaar and others, lpSolve: Interface to Lp_solve v. 5.5 to Solve Linear/Integer Programs. R package version 5.6.10, 2014. Available at https://CRAN.R-project.org/package=lpSolve | es_ES |
dc.description.references | Brown, P. J., & Payne, C. D. (1986). Aggregate Data, Ecological Regression, and Voting Transitions. Journal of the American Statistical Association, 81(394), 452-460. doi:10.1080/01621459.1986.10478290 | es_ES |
dc.description.references | Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76(1). doi:10.18637/jss.v076.i01 | es_ES |
dc.description.references | Caughey, D., & Wang, M. (2019). Dynamic Ecological Inference for Time-Varying Population Distributions Based on Sparse, Irregular, and Noisy Marginal Data. Political Analysis, 27(3), 388-396. doi:10.1017/pan.2019.4 | es_ES |
dc.description.references | Tam Cho, W. K. (1998). Iff the Assumption Fits…: A Comment on the King Ecological Inference Solution. Political Analysis, 7, 143-163. doi:10.1093/pan/7.1.143 | es_ES |
dc.description.references | Duncan, O. D., & Davis, B. (1953). An Alternative to Ecological Correlation. American Sociological Review, 18(6), 665. doi:10.2307/2088122 | es_ES |
dc.description.references | Fisher, L. H., & Wakefield, J. (2019). Ecological inference for infectious disease data, with application to vaccination strategies. Statistics in Medicine, 39(3), 220-238. doi:10.1002/sim.8390 | es_ES |
dc.description.references | Forcina, A., & Marchetti, G. M. (1989). Modelling Transition Probabilities in the Analysis of Aggregated Data. Lecture Notes in Statistics, 157-164. doi:10.1007/978-1-4612-3680-1_18 | es_ES |
dc.description.references | Forcina, A., & Marchetti, G. M. (2011). The Brown and Payne Model of Voter Transition Revisited. New Perspectives in Statistical Modeling and Data Analysis, 481-488. doi:10.1007/978-3-642-11363-5_54 | es_ES |
dc.description.references | Forcina, A., & Pellegrino, D. (2019). Estimation of voter transitions and the ecological fallacy. Quality & Quantity, 53(4), 1859-1874. doi:10.1007/s11135-019-00845-1 | es_ES |
dc.description.references | Füle, E. (1994). Estimating voter transitions by ecological regression. Electoral Studies, 13(4), 313-330. doi:10.1016/0261-3794(94)90043-4 | es_ES |
dc.description.references | Glynn, A. N., & Wakefield, J. (2010). Ecological inference in the social sciences. Statistical Methodology, 7(3), 307-322. doi:10.1016/j.stamet.2009.09.003 | es_ES |
dc.description.references | Gougou, F., & Sauger, N. (2017). The 2017 French Election Study (FES 2017): a post-electoral cross-sectional survey. French Politics, 15(3), 360-370. doi:10.1057/s41253-017-0045-6 | es_ES |
dc.description.references | James Greiner, D., & Quinn, K. M. (2009). R×Cecological inference: bounds, correlations, flexibility and transparency of assumptions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 67-81. doi:10.1111/j.1467-985x.2008.00551.x | es_ES |
dc.description.references | Greiner, D. J., & Quinn, K. M. (2010). Exit polling and racial bloc voting: Combining individual-level and R×C ecological data. The Annals of Applied Statistics, 4(4). doi:10.1214/10-aoas353 | es_ES |
dc.description.references | Hawkes, A. G. (1969). An Approach to the Analysis of Electoral Swing. Journal of the Royal Statistical Society. Series A (General), 132(1), 68. doi:10.2307/2343756 | es_ES |
dc.description.references | JOHNSTON, R. J., & HAY, A. M. (1983). Voter Transition Probability Estimates: An Entropy-Maximizing Approach*. European Journal of Political Research, 11(1), 93-98. doi:10.1111/j.1475-6765.1983.tb00045.x | es_ES |
dc.description.references | KING, G., ROSEN, O., & TANNER, M. A. (1999). Binomial-Beta Hierarchical Models for Ecological Inference. Sociological Methods & Research, 28(1), 61-90. doi:10.1177/0049124199028001004 | es_ES |
dc.description.references | King, G., Rosen, O., & Tanner, M. A. (Eds.). (2004). Ecological Inference. doi:10.1017/cbo9780511510595 | es_ES |
dc.description.references | J.M. Klein, Estimation of Voter Transitions in Multi-Party Systems. Quality of Credible Intervals in (hybrid) Multinomial-Dirichlet Models, Master Thesis diss., Ludwig-Maximilians-Universität München, 2019. | es_ES |
dc.description.references | Klima, A., Thurner, P. W., Molnar, C., Schlesinger, T., & Küchenhoff, H. (2015). Estimation of voter transitions based on ecological inference: an empirical assessment of different approaches. AStA Advances in Statistical Analysis, 100(2), 133-159. doi:10.1007/s10182-015-0254-8 | es_ES |
dc.description.references | Miller, W. L. (1972). Measures of Electoral Change Using Aggregate Data. Journal of the Royal Statistical Society. Series A (General), 135(1), 122. doi:10.2307/2345042 | es_ES |
dc.description.references | Núñez, L. (2016). Expressive and Strategic Behavior in Legislative Elections in Argentina. Political Behavior, 38(4), 899-920. doi:10.1007/s11109-016-9340-1 | es_ES |
dc.description.references | L. Olivia, O.R.T. Moore, and M. Kellermann, eiPack: Ecological Inference and Higher-Dimension Data Management. R package version 0.1-8, 2018. Available at https://CRAN.R-project.org/package=eiPack. | es_ES |
dc.description.references | W.H. Park, Ecological inference and aggregate analysis of elections, Ph.D. diss., The University of Michigan, 2008. | es_ES |
dc.description.references | Pavía, J. M., & Aybar, C. (2020). La mobilitat electoral en les eleccions de 2019 a la Comunitat Valenciana. Debats. Revista de cultura, poder i societat, 134(1), 27-51. doi:10.28939/iam.debats.134-1.3 | es_ES |
dc.description.references | Pavía, J. M., Badal, E., & García-Cárceles, B. (2016). Spanish exit polls. Sampling error or nonresponse bias? Revista Internacional de Sociología, 74(3), e043. doi:10.3989/ris.2016.74.3.043 | es_ES |
dc.description.references | Pavía, J. M., & Cantarino, I. (2017). Dasymetric distribution of votes in a dense city. Applied Geography, 86, 22-31. doi:10.1016/j.apgeog.2017.06.021 | es_ES |
dc.description.references | Pavía, J. M., Larraz, B., & Montero, J. M. (2008). Election Forecasts Using Spatiotemporal Models. Journal of the American Statistical Association, 103(483), 1050-1059. doi:10.1198/016214507000001427 | es_ES |
dc.description.references | Pavía, J. M., & López-Quílez, A. (2012). Spatial vote redistribution in redrawn polling units. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(3), 655-678. doi:10.1111/j.1467-985x.2012.01055.x | es_ES |
dc.description.references | Pavía-Miralles, J. M. (2005). Forecasts From Nonrandom Samples. Journal of the American Statistical Association, 100(472), 1113-1122. doi:10.1198/016214504000001835 | es_ES |
dc.description.references | Payne, C., Brown, P., & Hanna, V. (1986). By-election exit polls. Electoral Studies, 5(3), 277-287. doi:10.1016/0261-3794(86)90015-6 | es_ES |
dc.description.references | Plescia, C., & De Sio, L. (2017). An evaluation of the performance and suitability of R × C methods for ecological inference with known true values. Quality & Quantity, 52(2), 669-683. doi:10.1007/s11135-017-0481-z | es_ES |
dc.description.references | V. Pons, Comment expliquer les transferts de voix du premier au second tour? Le Figaro, mercredi 17 mai 2017, 13, 2017. | es_ES |
dc.description.references | Puig, X., & Ginebra, J. (2014). Ecological Inference and Spatial Variation of Individual Behavior: National Divide and Elections in Catalonia. Geographical Analysis, 47(3), 262-283. doi:10.1111/gean.12056 | es_ES |
dc.description.references | Robinson, W. S. (1950). Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15(3), 351. doi:10.2307/2087176 | es_ES |
dc.description.references | Rosen, O., Jiang, W., King, G., & Tanner, M. A. (2001). Bayesian and Frequentist Inference for Ecological Inference: The RxC Case. Statistica Neerlandica, 55(2), 134-156. doi:10.1111/1467-9574.00162 | es_ES |
dc.description.references | Snelling, C. J. (2015). Young People and Electoral Registration in the UK: Examining Local Activities to Maximise Youth Registration. Parliamentary Affairs, 69(3), 663-685. doi:10.1093/pa/gsv054 | es_ES |
dc.description.references | Tziafetas, G. (1986). Estimation of the voter transition matrix. Optimization, 17(2), 275-279. doi:10.1080/02331938608843128 | es_ES |
dc.description.references | Wakefield, J. (2004). Ecological inference for 2 x 2 tables. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(3), 385-425. doi:10.1111/j.1467-985x.2004.02046_1.x | es_ES |