- -

Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero, Rafael es_ES
dc.contributor.author Pavía, Jose M. es_ES
dc.contributor.author Martín Marín, Jorge es_ES
dc.contributor.author Romero, Gerardo es_ES
dc.date.accessioned 2021-02-17T04:32:09Z
dc.date.available 2021-02-17T04:32:09Z
dc.date.issued 2020-11-17 es_ES
dc.identifier.issn 0266-4763 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161604
dc.description.abstract [EN] Inferring electoral individual behaviour from aggregated data is a very active research area, with ramifications in sociology and political science. A new approach based on linear programming is proposed to estimate voter transitions among parties (or candidates) between two elections. Compared to other linear and quadratic programming models previously published, our approach presents two important innovations. Firstly, it explicitly deals with new entries and exits in the election census without assuming unrealistic hypotheses, enabling a reasonable estimation of vote behaviour of young electors voting for the first time. Secondly, by exploiting the information contained in the model residuals, we develop a procedure to assess the uncertainty in the estimates. This significantly distinguishes our model from other published mathematical programming methods. The method is illustrated estimating the vote transfer matrix between the first and second rounds of the 2017 French presidential election and measuring its level of uncertainty. Likewise, compared to the most current alternatives based on ecological regression, our approach is considerably simpler and faster, and has provided reasonable results in all the actual elections to which it has been applied. Interested scholars can easily use our procedure with the aid of the R-function provided in the Supplemental Material. es_ES
dc.description.sponsorship This piece of research has been supported by the Spanish Ministry of Science, Innovation and Universities and the Spanish Agency of Research, co-funded with FEDER funds, grant ECO2017-87245-R, and by Consellería d'Innovació, Universitats, Ciència i Societat Digital, Generalitat Valenciana, grant AICO/2019/053. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Applied Statistics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Ecological inference es_ES
dc.subject Linear programming es_ES
dc.subject Voter transitions es_ES
dc.subject R x C contingency tables es_ES
dc.subject French elections es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02664763.2020.1804842 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ECO2017-87245-R/ES/INNOVACION SOCIAL Y ECONOMICA, DESCIFRANDO LA FUNCION DE LA CULTURA Y LA COMUNICACION./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F053/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Romero, R.; Pavía, JM.; Martín Marín, J.; Romero, G. (2020). Assessing uncertainty of voter transitions estimated from aggregated data. Application to the 2017 French presidential election. Journal of Applied Statistics. 47(13-15):2711-2736. https://doi.org/10.1080/02664763.2020.1804842 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02664763.2020.1804842 es_ES
dc.description.upvformatpinicio 2711 es_ES
dc.description.upvformatpfin 2736 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 47 es_ES
dc.description.issue 13-15 es_ES
dc.relation.pasarela S\420185 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references U. Baydoğan, Vote transitions analysis and comparison of Turkish local elections in 2014 and 2019, Ph.D. diss., Mef University, 2019. es_ES
dc.description.references M. Berkelaar and others, lpSolve: Interface to Lp_solve v. 5.5 to Solve Linear/Integer Programs. R package version 5.6.10, 2014. Available at https://CRAN.R-project.org/package=lpSolve es_ES
dc.description.references Brown, P. J., & Payne, C. D. (1986). Aggregate Data, Ecological Regression, and Voting Transitions. Journal of the American Statistical Association, 81(394), 452-460. doi:10.1080/01621459.1986.10478290 es_ES
dc.description.references Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., … Riddell, A. (2017). Stan: A Probabilistic Programming Language. Journal of Statistical Software, 76(1). doi:10.18637/jss.v076.i01 es_ES
dc.description.references Caughey, D., & Wang, M. (2019). Dynamic Ecological Inference for Time-Varying Population Distributions Based on Sparse, Irregular, and Noisy Marginal Data. Political Analysis, 27(3), 388-396. doi:10.1017/pan.2019.4 es_ES
dc.description.references Tam Cho, W. K. (1998). Iff the Assumption Fits…: A Comment on the King Ecological Inference Solution. Political Analysis, 7, 143-163. doi:10.1093/pan/7.1.143 es_ES
dc.description.references Duncan, O. D., & Davis, B. (1953). An Alternative to Ecological Correlation. American Sociological Review, 18(6), 665. doi:10.2307/2088122 es_ES
dc.description.references Fisher, L. H., & Wakefield, J. (2019). Ecological inference for infectious disease data, with application to vaccination strategies. Statistics in Medicine, 39(3), 220-238. doi:10.1002/sim.8390 es_ES
dc.description.references Forcina, A., & Marchetti, G. M. (1989). Modelling Transition Probabilities in the Analysis of Aggregated Data. Lecture Notes in Statistics, 157-164. doi:10.1007/978-1-4612-3680-1_18 es_ES
dc.description.references Forcina, A., & Marchetti, G. M. (2011). The Brown and Payne Model of Voter Transition Revisited. New Perspectives in Statistical Modeling and Data Analysis, 481-488. doi:10.1007/978-3-642-11363-5_54 es_ES
dc.description.references Forcina, A., & Pellegrino, D. (2019). Estimation of voter transitions and the ecological fallacy. Quality & Quantity, 53(4), 1859-1874. doi:10.1007/s11135-019-00845-1 es_ES
dc.description.references Füle, E. (1994). Estimating voter transitions by ecological regression. Electoral Studies, 13(4), 313-330. doi:10.1016/0261-3794(94)90043-4 es_ES
dc.description.references Glynn, A. N., & Wakefield, J. (2010). Ecological inference in the social sciences. Statistical Methodology, 7(3), 307-322. doi:10.1016/j.stamet.2009.09.003 es_ES
dc.description.references Gougou, F., & Sauger, N. (2017). The 2017 French Election Study (FES 2017): a post-electoral cross-sectional survey. French Politics, 15(3), 360-370. doi:10.1057/s41253-017-0045-6 es_ES
dc.description.references James Greiner, D., & Quinn, K. M. (2009). R×Cecological inference: bounds, correlations, flexibility and transparency of assumptions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 172(1), 67-81. doi:10.1111/j.1467-985x.2008.00551.x es_ES
dc.description.references Greiner, D. J., & Quinn, K. M. (2010). Exit polling and racial bloc voting: Combining individual-level and R×C ecological data. The Annals of Applied Statistics, 4(4). doi:10.1214/10-aoas353 es_ES
dc.description.references Hawkes, A. G. (1969). An Approach to the Analysis of Electoral Swing. Journal of the Royal Statistical Society. Series A (General), 132(1), 68. doi:10.2307/2343756 es_ES
dc.description.references JOHNSTON, R. J., & HAY, A. M. (1983). Voter Transition Probability Estimates: An Entropy-Maximizing Approach*. European Journal of Political Research, 11(1), 93-98. doi:10.1111/j.1475-6765.1983.tb00045.x es_ES
dc.description.references KING, G., ROSEN, O., & TANNER, M. A. (1999). Binomial-Beta Hierarchical Models for Ecological Inference. Sociological Methods & Research, 28(1), 61-90. doi:10.1177/0049124199028001004 es_ES
dc.description.references King, G., Rosen, O., & Tanner, M. A. (Eds.). (2004). Ecological Inference. doi:10.1017/cbo9780511510595 es_ES
dc.description.references J.M. Klein, Estimation of Voter Transitions in Multi-Party Systems. Quality of Credible Intervals in (hybrid) Multinomial-Dirichlet Models, Master Thesis diss., Ludwig-Maximilians-Universität München, 2019. es_ES
dc.description.references Klima, A., Thurner, P. W., Molnar, C., Schlesinger, T., & Küchenhoff, H. (2015). Estimation of voter transitions based on ecological inference: an empirical assessment of different approaches. AStA Advances in Statistical Analysis, 100(2), 133-159. doi:10.1007/s10182-015-0254-8 es_ES
dc.description.references Miller, W. L. (1972). Measures of Electoral Change Using Aggregate Data. Journal of the Royal Statistical Society. Series A (General), 135(1), 122. doi:10.2307/2345042 es_ES
dc.description.references Núñez, L. (2016). Expressive and Strategic Behavior in Legislative Elections in Argentina. Political Behavior, 38(4), 899-920. doi:10.1007/s11109-016-9340-1 es_ES
dc.description.references L. Olivia, O.R.T. Moore, and M. Kellermann, eiPack: Ecological Inference and Higher-Dimension Data Management. R package version 0.1-8, 2018. Available at https://CRAN.R-project.org/package=eiPack. es_ES
dc.description.references W.H. Park, Ecological inference and aggregate analysis of elections, Ph.D. diss., The University of Michigan, 2008. es_ES
dc.description.references Pavía, J. M., & Aybar, C. (2020). La mobilitat electoral en les eleccions de 2019 a la Comunitat Valenciana. Debats. Revista de cultura, poder i societat, 134(1), 27-51. doi:10.28939/iam.debats.134-1.3 es_ES
dc.description.references Pavía, J. M., Badal, E., & García-Cárceles, B. (2016). Spanish exit polls. Sampling error or nonresponse bias? Revista Internacional de Sociología, 74(3), e043. doi:10.3989/ris.2016.74.3.043 es_ES
dc.description.references Pavía, J. M., & Cantarino, I. (2017). Dasymetric distribution of votes in a dense city. Applied Geography, 86, 22-31. doi:10.1016/j.apgeog.2017.06.021 es_ES
dc.description.references Pavía, J. M., Larraz, B., & Montero, J. M. (2008). Election Forecasts Using Spatiotemporal Models. Journal of the American Statistical Association, 103(483), 1050-1059. doi:10.1198/016214507000001427 es_ES
dc.description.references Pavía, J. M., & López-Quílez, A. (2012). Spatial vote redistribution in redrawn polling units. Journal of the Royal Statistical Society: Series A (Statistics in Society), 176(3), 655-678. doi:10.1111/j.1467-985x.2012.01055.x es_ES
dc.description.references Pavía-Miralles, J. M. (2005). Forecasts From Nonrandom Samples. Journal of the American Statistical Association, 100(472), 1113-1122. doi:10.1198/016214504000001835 es_ES
dc.description.references Payne, C., Brown, P., & Hanna, V. (1986). By-election exit polls. Electoral Studies, 5(3), 277-287. doi:10.1016/0261-3794(86)90015-6 es_ES
dc.description.references Plescia, C., & De Sio, L. (2017). An evaluation of the performance and suitability of R × C methods for ecological inference with known true values. Quality & Quantity, 52(2), 669-683. doi:10.1007/s11135-017-0481-z es_ES
dc.description.references V. Pons, Comment expliquer les transferts de voix du premier au second tour? Le Figaro, mercredi 17 mai 2017, 13, 2017. es_ES
dc.description.references Puig, X., & Ginebra, J. (2014). Ecological Inference and Spatial Variation of Individual Behavior: National Divide and Elections in Catalonia. Geographical Analysis, 47(3), 262-283. doi:10.1111/gean.12056 es_ES
dc.description.references Robinson, W. S. (1950). Ecological Correlations and the Behavior of Individuals. American Sociological Review, 15(3), 351. doi:10.2307/2087176 es_ES
dc.description.references Rosen, O., Jiang, W., King, G., & Tanner, M. A. (2001). Bayesian and Frequentist Inference for Ecological Inference: The RxC Case. Statistica Neerlandica, 55(2), 134-156. doi:10.1111/1467-9574.00162 es_ES
dc.description.references Snelling, C. J. (2015). Young People and Electoral Registration in the UK: Examining Local Activities to Maximise Youth Registration. Parliamentary Affairs, 69(3), 663-685. doi:10.1093/pa/gsv054 es_ES
dc.description.references Tziafetas, G. (1986). Estimation of the voter transition matrix. Optimization, 17(2), 275-279. doi:10.1080/02331938608843128 es_ES
dc.description.references Wakefield, J. (2004). Ecological inference for 2 x 2 tables. Journal of the Royal Statistical Society: Series A (Statistics in Society), 167(3), 385-425. doi:10.1111/j.1467-985x.2004.02046_1.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem