- -

Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China

Mostrar el registro completo del ítem

Zhou, Z.; Alcalá-González, J.; Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental research and Public Health. 17(16):1-22. https://doi.org/10.3390/ijerph17165953

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161605

Ficheros en el ítem

Metadatos del ítem

Título: Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China
Autor: Zhou, ZhiWu Alcalá-González, Julián Yepes, V.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Due to the rapid growth of the construction industry¿s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of ...[+]
Palabras clave: Greenhouse gas , Environmental impact , Cable-stayed bridge , Life-cycle assessment , Sustainable construction
Derechos de uso: Reconocimiento (by)
Fuente:
International Journal of Environmental research and Public Health. (eissn: 1660-4601 )
DOI: 10.3390/ijerph17165953
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/ijerph17165953
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/
Agradecimientos:
This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R.
Tipo: Artículo

References

The Intergovernmental Panel on Climate Change https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556

Kong, J. S., & Frangopol, D. M. (2003). Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering, 129(6), 818-828. doi:10.1061/(asce)0733-9445(2003)129:6(818) [+]
The Intergovernmental Panel on Climate Change https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556

Kong, J. S., & Frangopol, D. M. (2003). Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering, 129(6), 818-828. doi:10.1061/(asce)0733-9445(2003)129:6(818)

Larsson Ivanov, O., Honfi, D., Santandrea, F., & Stripple, H. (2019). Consideration of uncertainties in LCA for infrastructure using probabilistic methods. Structure and Infrastructure Engineering, 15(6), 711-724. doi:10.1080/15732479.2019.1572200

ETSI project-Stage III http://etsi.aalto.fi/Etsi3/index.html

ProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme https://www.probas.umweltbundesamt.de/php/news.php?id=3

Japan Environmental Management Association for Industry https://lca-forum.org/english/

Ecoinvent database https://www.ecoinvent.org/database/database.html

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013

Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0

Heijungs, R., Huppes, G., & Guinée, J. B. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422-428. doi:10.1016/j.polymdegradstab.2009.11.010

Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864

Jutta Hildenbrand OpenLCA 1.10 http://www.openlca.org/

CML-IA Characterisation Factors https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors

Bare, J. C., Hofstetter, P., Pennington, D. W., & de Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6). doi:10.1007/bf02978665

Wei, J., & Cen, K. (2019). A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitigation and Adaptation Strategies for Global Change, 24(8), 1343-1362. doi:10.1007/s11027-019-09848-7

Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z

Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074

Arbault, D., Rivière, M., Rugani, B., Benetto, E., & Tiruta-Barna, L. (2014). Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of The Total Environment, 472, 262-272. doi:10.1016/j.scitotenv.2013.10.099

Ogundipe, O. M. (2016). Marshall Stability and Flow of Lime-modified Asphalt Concrete. Transportation Research Procedia, 14, 685-693. doi:10.1016/j.trpro.2016.05.333

Liu, Y., Wang, Y., & Li, D. (2017). Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China. Journal of Cleaner Production, 144, 337-346. doi:10.1016/j.jclepro.2017.01.015

Colvile, R. ., Hutchinson, E. ., Mindell, J. ., & Warren, R. . (2001). The transport sector as a source of air pollution. Atmospheric Environment, 35(9), 1537-1565. doi:10.1016/s1352-2310(00)00551-3

Fushun City 2019 National Economic and Social Development Statistical Bulletin http://www.tjcn.org/tjgb/

Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., … Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of The Total Environment, 559, 7-14. doi:10.1016/j.scitotenv.2016.03.125

Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328

Chen, Y., Liu, P., & Yu, Z. (2018). Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11(11), 2167. doi:10.3390/ma11112167

Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584. doi:10.1016/s1352-2310(00)00461-1

Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, 1-13. doi:10.1155/2020/8823370

Kim, K. J., Yun, W. G., Cho, N., & Ha, J. (2017). Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environmental Impact Assessment Review, 64, 47-56. doi:10.1016/j.eiar.2017.02.003

Zhu, X., Li, H., Chen, J., & Jiang, F. (2019). Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. Journal of Cleaner Production, 240, 118184. doi:10.1016/j.jclepro.2019.118184

Li, L., Sun, L., & Ning, G. (2014). Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model. Mathematical Problems in Engineering, 2014, 1-10. doi:10.1155/2014/728107

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem