Mostrar el registro sencillo del ítem
dc.contributor.author | Zhou, ZhiWu | es_ES |
dc.contributor.author | Alcalá-González, Julián | es_ES |
dc.contributor.author | Yepes, V. | es_ES |
dc.date.accessioned | 2021-02-17T04:32:11Z | |
dc.date.available | 2021-02-17T04:32:11Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161605 | |
dc.description.abstract | [EN] Due to the rapid growth of the construction industry¿s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of bridges at each stage of the full life cycle, which can provide optimal data support for sustainable development analysis. In this work, the environmental impact case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than 23,680 groups of data were analyzed using Markov chain and other research methods. It was concluded that the cable-stayed bridge contributed the most to the global warming potential value, which was mainly concentrated in the operation and maintenance phases. The conclusion shows that controlling the exhaust pollution of passing vehicles and improving the durability of building materials were the key to reducing carbon contribution and are also important directions for future research. | es_ES |
dc.description.sponsorship | This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | International Journal of Environmental research and Public Health | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Greenhouse gas | es_ES |
dc.subject | Environmental impact | es_ES |
dc.subject | Cable-stayed bridge | es_ES |
dc.subject | Life-cycle assessment | es_ES |
dc.subject | Sustainable construction | es_ES |
dc.subject.classification | INGENIERIA DE LA CONSTRUCCION | es_ES |
dc.title | Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/ijerph17165953 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil | es_ES |
dc.description.bibliographicCitation | Zhou, Z.; Alcalá-González, J.; Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental research and Public Health. 17(16):1-22. https://doi.org/10.3390/ijerph17165953 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/ijerph17165953 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.eissn | 1660-4601 | es_ES |
dc.identifier.pmid | 32824451 | es_ES |
dc.identifier.pmcid | PMC7460245 | es_ES |
dc.relation.pasarela | S\417165 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | The Intergovernmental Panel on Climate Change https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/ | es_ES |
dc.description.references | Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556 | es_ES |
dc.description.references | Kong, J. S., & Frangopol, D. M. (2003). Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering, 129(6), 818-828. doi:10.1061/(asce)0733-9445(2003)129:6(818) | es_ES |
dc.description.references | Larsson Ivanov, O., Honfi, D., Santandrea, F., & Stripple, H. (2019). Consideration of uncertainties in LCA for infrastructure using probabilistic methods. Structure and Infrastructure Engineering, 15(6), 711-724. doi:10.1080/15732479.2019.1572200 | es_ES |
dc.description.references | ETSI project-Stage III http://etsi.aalto.fi/Etsi3/index.html | es_ES |
dc.description.references | ProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme https://www.probas.umweltbundesamt.de/php/news.php?id=3 | es_ES |
dc.description.references | Japan Environmental Management Association for Industry https://lca-forum.org/english/ | es_ES |
dc.description.references | Ecoinvent database https://www.ecoinvent.org/database/database.html | es_ES |
dc.description.references | García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 | es_ES |
dc.description.references | Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0 | es_ES |
dc.description.references | Heijungs, R., Huppes, G., & Guinée, J. B. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422-428. doi:10.1016/j.polymdegradstab.2009.11.010 | es_ES |
dc.description.references | Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 | es_ES |
dc.description.references | Jutta Hildenbrand OpenLCA 1.10 http://www.openlca.org/ | es_ES |
dc.description.references | CML-IA Characterisation Factors https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors | es_ES |
dc.description.references | Bare, J. C., Hofstetter, P., Pennington, D. W., & de Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6). doi:10.1007/bf02978665 | es_ES |
dc.description.references | Wei, J., & Cen, K. (2019). A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitigation and Adaptation Strategies for Global Change, 24(8), 1343-1362. doi:10.1007/s11027-019-09848-7 | es_ES |
dc.description.references | Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z | es_ES |
dc.description.references | Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074 | es_ES |
dc.description.references | Arbault, D., Rivière, M., Rugani, B., Benetto, E., & Tiruta-Barna, L. (2014). Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of The Total Environment, 472, 262-272. doi:10.1016/j.scitotenv.2013.10.099 | es_ES |
dc.description.references | Ogundipe, O. M. (2016). Marshall Stability and Flow of Lime-modified Asphalt Concrete. Transportation Research Procedia, 14, 685-693. doi:10.1016/j.trpro.2016.05.333 | es_ES |
dc.description.references | Liu, Y., Wang, Y., & Li, D. (2017). Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China. Journal of Cleaner Production, 144, 337-346. doi:10.1016/j.jclepro.2017.01.015 | es_ES |
dc.description.references | Colvile, R. ., Hutchinson, E. ., Mindell, J. ., & Warren, R. . (2001). The transport sector as a source of air pollution. Atmospheric Environment, 35(9), 1537-1565. doi:10.1016/s1352-2310(00)00551-3 | es_ES |
dc.description.references | Fushun City 2019 National Economic and Social Development Statistical Bulletin http://www.tjcn.org/tjgb/ | es_ES |
dc.description.references | Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., … Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of The Total Environment, 559, 7-14. doi:10.1016/j.scitotenv.2016.03.125 | es_ES |
dc.description.references | Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 | es_ES |
dc.description.references | Chen, Y., Liu, P., & Yu, Z. (2018). Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11(11), 2167. doi:10.3390/ma11112167 | es_ES |
dc.description.references | Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584. doi:10.1016/s1352-2310(00)00461-1 | es_ES |
dc.description.references | Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, 1-13. doi:10.1155/2020/8823370 | es_ES |
dc.description.references | Kim, K. J., Yun, W. G., Cho, N., & Ha, J. (2017). Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environmental Impact Assessment Review, 64, 47-56. doi:10.1016/j.eiar.2017.02.003 | es_ES |
dc.description.references | Zhu, X., Li, H., Chen, J., & Jiang, F. (2019). Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. Journal of Cleaner Production, 240, 118184. doi:10.1016/j.jclepro.2019.118184 | es_ES |
dc.description.references | Li, L., Sun, L., & Ning, G. (2014). Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model. Mathematical Problems in Engineering, 2014, 1-10. doi:10.1155/2014/728107 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |