- -

Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Zhou, ZhiWu es_ES
dc.contributor.author Alcalá-González, Julián es_ES
dc.contributor.author Yepes, V. es_ES
dc.date.accessioned 2021-02-17T04:32:11Z
dc.date.available 2021-02-17T04:32:11Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161605
dc.description.abstract [EN] Due to the rapid growth of the construction industry¿s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of bridges at each stage of the full life cycle, which can provide optimal data support for sustainable development analysis. In this work, the environmental impact case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than 23,680 groups of data were analyzed using Markov chain and other research methods. It was concluded that the cable-stayed bridge contributed the most to the global warming potential value, which was mainly concentrated in the operation and maintenance phases. The conclusion shows that controlling the exhaust pollution of passing vehicles and improving the durability of building materials were the key to reducing carbon contribution and are also important directions for future research. es_ES
dc.description.sponsorship This research was funded by the Spanish Ministry of Economy and Competitiveness, along with FEDER (Fondo Europeo de Desarrollo Regional), project grant number: BIA2017-85098-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof International Journal of Environmental research and Public Health es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Greenhouse gas es_ES
dc.subject Environmental impact es_ES
dc.subject Cable-stayed bridge es_ES
dc.subject Life-cycle assessment es_ES
dc.subject Sustainable construction es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ijerph17165953 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Zhou, Z.; Alcalá-González, J.; Yepes, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental research and Public Health. 17(16):1-22. https://doi.org/10.3390/ijerph17165953 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ijerph17165953 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 16 es_ES
dc.identifier.eissn 1660-4601 es_ES
dc.identifier.pmid 32824451 es_ES
dc.identifier.pmcid PMC7460245 es_ES
dc.relation.pasarela S\417165 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references The Intergovernmental Panel on Climate Change https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/ es_ES
dc.description.references Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. doi:10.1016/j.jclepro.2020.120556 es_ES
dc.description.references Kong, J. S., & Frangopol, D. M. (2003). Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal of Structural Engineering, 129(6), 818-828. doi:10.1061/(asce)0733-9445(2003)129:6(818) es_ES
dc.description.references Larsson Ivanov, O., Honfi, D., Santandrea, F., & Stripple, H. (2019). Consideration of uncertainties in LCA for infrastructure using probabilistic methods. Structure and Infrastructure Engineering, 15(6), 711-724. doi:10.1080/15732479.2019.1572200 es_ES
dc.description.references ETSI project-Stage III http://etsi.aalto.fi/Etsi3/index.html es_ES
dc.description.references ProBas Prozessorientierte Basisdaten für Umweltmanagementsysteme https://www.probas.umweltbundesamt.de/php/news.php?id=3 es_ES
dc.description.references Japan Environmental Management Association for Industry https://lca-forum.org/english/ es_ES
dc.description.references Ecoinvent database https://www.ecoinvent.org/database/database.html es_ES
dc.description.references García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures, 145, 381-391. doi:10.1016/j.engstruct.2017.05.013 es_ES
dc.description.references Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0 es_ES
dc.description.references Heijungs, R., Huppes, G., & Guinée, J. B. (2010). Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polymer Degradation and Stability, 95(3), 422-428. doi:10.1016/j.polymdegradstab.2009.11.010 es_ES
dc.description.references Penadés-Plà, V., Martí, J. V., García-Segura, T., & Yepes, V. (2017). Life-Cycle Assessment: A Comparison between Two Optimal Post-Tensioned Concrete Box-Girder Road Bridges. Sustainability, 9(10), 1864. doi:10.3390/su9101864 es_ES
dc.description.references Jutta Hildenbrand OpenLCA 1.10 http://www.openlca.org/ es_ES
dc.description.references CML-IA Characterisation Factors https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors es_ES
dc.description.references Bare, J. C., Hofstetter, P., Pennington, D. W., & de Haes, H. A. U. (2000). Midpoints versus endpoints: The sacrifices and benefits. The International Journal of Life Cycle Assessment, 5(6). doi:10.1007/bf02978665 es_ES
dc.description.references Wei, J., & Cen, K. (2019). A preliminary calculation of cement carbon dioxide in China from 1949 to 2050. Mitigation and Adaptation Strategies for Global Change, 24(8), 1343-1362. doi:10.1007/s11027-019-09848-7 es_ES
dc.description.references Du, G., Safi, M., Pettersson, L., & Karoumi, R. (2014). Life cycle assessment as a decision support tool for bridge procurement: environmental impact comparison among five bridge designs. The International Journal of Life Cycle Assessment, 19(12), 1948-1964. doi:10.1007/s11367-014-0797-z es_ES
dc.description.references Kim, T., & Tae, S. (2016). Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment). International Journal of Environmental Research and Public Health, 13(11), 1074. doi:10.3390/ijerph13111074 es_ES
dc.description.references Arbault, D., Rivière, M., Rugani, B., Benetto, E., & Tiruta-Barna, L. (2014). Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of The Total Environment, 472, 262-272. doi:10.1016/j.scitotenv.2013.10.099 es_ES
dc.description.references Ogundipe, O. M. (2016). Marshall Stability and Flow of Lime-modified Asphalt Concrete. Transportation Research Procedia, 14, 685-693. doi:10.1016/j.trpro.2016.05.333 es_ES
dc.description.references Liu, Y., Wang, Y., & Li, D. (2017). Estimation and uncertainty analysis on carbon dioxide emissions from construction phase of real highway projects in China. Journal of Cleaner Production, 144, 337-346. doi:10.1016/j.jclepro.2017.01.015 es_ES
dc.description.references Colvile, R. ., Hutchinson, E. ., Mindell, J. ., & Warren, R. . (2001). The transport sector as a source of air pollution. Atmospheric Environment, 35(9), 1537-1565. doi:10.1016/s1352-2310(00)00551-3 es_ES
dc.description.references Fushun City 2019 National Economic and Social Development Statistical Bulletin http://www.tjcn.org/tjgb/ es_ES
dc.description.references Wang, K., Tian, H., Hua, S., Zhu, C., Gao, J., Xue, Y., … Zhou, J. (2016). A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China: Temporal trends and spatial variation characteristics. Science of The Total Environment, 559, 7-14. doi:10.1016/j.scitotenv.2016.03.125 es_ES
dc.description.references Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 es_ES
dc.description.references Chen, Y., Liu, P., & Yu, Z. (2018). Effects of Environmental Factors on Concrete Carbonation Depth and Compressive Strength. Materials, 11(11), 2167. doi:10.3390/ma11112167 es_ES
dc.description.references Watson, J. G., Chow, J. C., & Fujita, E. M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmospheric Environment, 35(9), 1567-1584. doi:10.1016/s1352-2310(00)00461-1 es_ES
dc.description.references Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, 1-13. doi:10.1155/2020/8823370 es_ES
dc.description.references Kim, K. J., Yun, W. G., Cho, N., & Ha, J. (2017). Life cycle assessment based environmental impact estimation model for pre-stressed concrete beam bridge in the early design phase. Environmental Impact Assessment Review, 64, 47-56. doi:10.1016/j.eiar.2017.02.003 es_ES
dc.description.references Zhu, X., Li, H., Chen, J., & Jiang, F. (2019). Pollution control efficiency of China’s iron and steel industry: Evidence from different manufacturing processes. Journal of Cleaner Production, 240, 118184. doi:10.1016/j.jclepro.2019.118184 es_ES
dc.description.references Li, L., Sun, L., & Ning, G. (2014). Deterioration Prediction of Urban Bridges on Network Level Using Markov-Chain Model. Mathematical Problems in Engineering, 2014, 1-10. doi:10.1155/2014/728107 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem