- -

On the choice of the best members of the Kim family and the improvement of its convergence

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the choice of the best members of the Kim family and the improvement of its convergence

Mostrar el registro completo del ítem

Chicharro Lopez, FI.; Cordero Barbero, A.; Garrido, N.; Torregrosa Sánchez, JR. (2020). On the choice of the best members of the Kim family and the improvement of its convergence. Mathematical Methods in the Applied Sciences. 43(14):8051-8066. https://doi.org/10.1002/mma.6014

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161607

Ficheros en el ítem

Metadatos del ítem

Título: On the choice of the best members of the Kim family and the improvement of its convergence
Autor: Chicharro Lopez, Francisco Israel Cordero Barbero, Alicia Garrido, Neus Torregrosa Sánchez, Juan Ramón
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Fecha difusión:
Palabras clave: Basin of attraction , Iterative methods with memory , Low-dimensional dynamical systems , Nonlinear algebraic or transcendental equations , Parameter plane , Stability
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.6014
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.6014
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
Generalitat Valenciana, Grant/Award Number: PROMETEO/2016/089; Ministerio de Ciencia e Innovacion, Grant/Award Number: PGC2018-095896-B-C22
Tipo: Artículo

References

Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

Džunić, J., & Petković, M. S. (2014). On generalized biparametric multipoint root finding methods with memory. Journal of Computational and Applied Mathematics, 255, 362-375. doi:10.1016/j.cam.2013.05.013 [+]
Amat, S., & Busquier, S. (Eds.). (2016). Advances in Iterative Methods for Nonlinear Equations. SEMA SIMAI Springer Series. doi:10.1007/978-3-319-39228-8

Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860

Džunić, J., & Petković, M. S. (2014). On generalized biparametric multipoint root finding methods with memory. Journal of Computational and Applied Mathematics, 255, 362-375. doi:10.1016/j.cam.2013.05.013

Dzunic, J., Petkovic, L., & Petkovic, M. (2018). On an application of Herzberger’s matrix method to multipoint families of root-solvers. Filomat, 32(11), 3815-3829. doi:10.2298/fil1811815d

Lotfi, T., Soleymani, F., Ghorbanzadeh, M., & Assari, P. (2015). On the construction of some tri-parametric iterative methods with memory. Numerical Algorithms, 70(4), 835-845. doi:10.1007/s11075-015-9976-7

Sharma, J. R., & Gupta, P. (2015). On Some Highly Efficient Derivative Free Methods With and Without Memory for Solving Nonlinear Equations. International Journal of Computational Methods, 12(01), 1350093. doi:10.1142/s021987621350093x

Zafar, F., Yasmin, N., Kutbi, M. A., & Zeshan, M. (2016). Construction of Tri-parametric derivative free fourth order with and without memory iterative method. Journal of Nonlinear Sciences and Applications, 09(04), 1410-1423. doi:10.22436/jnsa.009.04.01

Zafar, F., Cordero, A., Torregrosa, J. R., & Rafi, A. (2019). A class of four parametric with‐ and without‐memory root finding methods. Computational and Mathematical Methods, 1(3), e1024. doi:10.1002/cmm4.1024

Torkashvand, V., Lotfi, T., & Fariborzi Araghi, M. A. (2018). A new family of adaptive methods with memory for solving nonlinear equations. Mathematical Sciences, 13(1), 1-20. doi:10.1007/s40096-018-0272-2

Ik Kim, Y. (2012). A triparametric family of three-step optimal eighth-order methods for solving nonlinear equations. International Journal of Computer Mathematics, 89(8), 1051-1059. doi:10.1080/00207160.2012.673597

Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/780153

Blanchard, P. (1984). Complex analytic dynamics on the Riemann sphere. Bulletin of the American Mathematical Society, 11(1), 85-141. doi:10.1090/s0273-0979-1984-15240-6

Lee, S. D., Kim, Y. I., & Neta, B. (2017). An optimal family of eighth-order simple-root finders with weight functions dependent on function-to-function ratios and their dynamics underlying extraneous fixed points. Journal of Computational and Applied Mathematics, 317, 31-54. doi:10.1016/j.cam.2016.11.036

Geum, Y. H., Kim, Y. I., & Neta, B. (2018). Developing an Optimal Class of Generic Sixteenth-Order Simple-Root Finders and Investigating Their Dynamics. Mathematics, 7(1), 8. doi:10.3390/math7010008

Cordero, A., Guasp, L., & Torregrosa, J. R. (2018). Choosing the most stable members of Kou’s family of iterative methods. Journal of Computational and Applied Mathematics, 330, 759-769. doi:10.1016/j.cam.2017.02.012

Chicharro, F. I., Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2017). King-Type Derivative-Free Iterative Families: Real and Memory Dynamics. Complexity, 2017, 1-15. doi:10.1155/2017/2713145

Magreñán, Á. A. (2014). A new tool to study real dynamics: The convergence plane. Applied Mathematics and Computation, 248, 215-224. doi:10.1016/j.amc.2014.09.061

Chicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2018). Stability and applicability of iterative methods with memory. Journal of Mathematical Chemistry, 57(5), 1282-1300. doi:10.1007/s10910-018-0952-z

Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2013). A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. Journal of Computational and Applied Mathematics, 252, 95-102. doi:10.1016/j.cam.2012.03.030

Chicharro, F., Cordero, A., & Torregrosa, J. (2015). Dynamics and Fractal Dimension of Steffensen-Type Methods. Algorithms, 8(2), 271-279. doi:10.3390/a8020271

Campos, B., Cordero, A., Torregrosa, J. R., & Vindel, P. (2017). Stability of King’s family of iterative methods with memory. Journal of Computational and Applied Mathematics, 318, 504-514. doi:10.1016/j.cam.2016.01.035

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem