- -

Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions

Mostrar el registro completo del ítem

Mares-Nasarre, P.; Gómez-Martín, ME.; Medina, JR. (2020). Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions. Journal of Marine Science and Engineering. 8(1):1-16. https://doi.org/10.3390/jmse8010003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161609

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions
Autor: Mares-Nasarre, Patricia GÓMEZ-MARTÍN, M. ESTHER Medina, Josep R.
Entidad UPV: Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori
Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Fecha difusión:
Resumen:
[EN] The crest elevation of mound breakwaters is usually designed considering a tolerable mean wave overtopping discharge. However, pedestrian safety, characterized by the overtopping layer thickness (OLT) and the overtopping ...[+]
Palabras clave: Mound breakwater , Overtopping , Overtopping layer thickness , Overtopping flow velocity , Bottom slope , Breaking waves
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Marine Science and Engineering. (eissn: 2077-1312 )
DOI: 10.3390/jmse8010003
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/jmse8010003
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-70436-R/ES/ESTABILIDAD HIDRAULICA DEL MANTO, BERMAS Y CORONACION DE DIQUES EN TALUD CON REBASE Y ROTURA POR FONDO/
info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/
Agradecimientos:
This research was funded by Ministerio de Economia y Competitividad and the Fondo Europeo de Desarrollo Regional (FEDER) under grant BIA2015-70436-R and RTI2018-101073-B-I00. The first author was also financially supported ...[+]
Tipo: Artículo

References

www.overtopping-manual.com

Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322

Nørgaard, J. Q. H., Lykke Andersen, T., & Burcharth, H. F. (2014). Distribution of individual wave overtopping volumes in shallow water wave conditions. Coastal Engineering, 83, 15-23. doi:10.1016/j.coastaleng.2013.09.003 [+]
www.overtopping-manual.com

Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322

Nørgaard, J. Q. H., Lykke Andersen, T., & Burcharth, H. F. (2014). Distribution of individual wave overtopping volumes in shallow water wave conditions. Coastal Engineering, 83, 15-23. doi:10.1016/j.coastaleng.2013.09.003

Molines, J., Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2019). Distribution of individual wave overtopping volumes on mound breakwaters. Coastal Engineering, 149, 15-27. doi:10.1016/j.coastaleng.2019.03.006

Mares-Nasarre, P., Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2019). Overtopping layer thickness and overtopping flow velocity on mound breakwaters. Coastal Engineering, 154, 103561. doi:10.1016/j.coastaleng.2019.103561

Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2017). Hydraulic stability of rock armors in breaking wave conditions. Coastal Engineering, 127, 55-67. doi:10.1016/j.coastaleng.2017.06.010

Van Gent, M. R. A. (2003). WAVE OVERTOPPING EVENTS AT DIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0185

Schüttrumpf, H., Möller, J., & Oumeraci, H. (2003). OVERTOPPING FLOW PARAMETERS ON THE INNER SLOPE OF SEADIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0178

Gent, M. R. A. van. (2001). Wave Runup on Dikes with Shallow Foreshores. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(5), 254-262. doi:10.1061/(asce)0733-950x(2001)127:5(254)

Van der Meer, J. W., Hardeman, B., Steendam, G. J., Schuttrumpf, H., & Verheij, H. (2011). FLOW DEPTHS AND VELOCITIES AT CREST AND LANDWARD SLOPE OF A DIKE, IN THEORY AND WITH THE WAVE OVERTOPPING SIMULATOR. Coastal Engineering Proceedings, 1(32), 10. doi:10.9753/icce.v32.structures.10

Lorke, S., Scheres, B., Schüttrumpf, H., Bornschein, A., & Pohl, R. (2012). PHYSICAL MODEL TESTS ON WAVE OVERTOPPING AND FLOW PROCESSES ON DIKE CRESTS INFLUENCED BY WAVE-CURRENT INTERACTION. Coastal Engineering Proceedings, 1(33), 34. doi:10.9753/icce.v33.waves.34

Herrera, M. P., & Medina, J. R. (2015). Toe berm design for very shallow waters on steep sea bottoms. Coastal Engineering, 103, 67-77. doi:10.1016/j.coastaleng.2015.06.005

Gómez-Martín, M. E., & Medina, J. R. (2014). Heterogeneous Packing and Hydraulic Stability of Cube and Cubipod Armor Units. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(1), 100-108. doi:10.1061/(asce)ww.1943-5460.0000223

Argente, G., Gómez-Martín, M., & Medina, J. (2018). Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. Journal of Marine Science and Engineering, 6(4), 143. doi:10.3390/jmse6040143

Gómez-Martín, M., Herrera, M., Gonzalez-Escriva, J., & Medina, J. (2018). Cubipod® Armor Design in Depth-Limited Regular Wave-Breaking Conditions. Journal of Marine Science and Engineering, 6(4), 150. doi:10.3390/jmse6040150

Battjes, J. A., & Groenendijk, H. W. (2000). Wave height distributions on shallow foreshores. Coastal Engineering, 40(3), 161-182. doi:10.1016/s0378-3839(00)00007-7

Victor, L., van der Meer, J. W., & Troch, P. (2012). Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards. Coastal Engineering, 64, 87-101. doi:10.1016/j.coastaleng.2012.01.003

Verhagen, H. J., van Vledder, G., & Arab, S. E. (2009). A PRACTICAL METHOD FOR DESIGN OF COASTAL STRUCTURES IN SHALLOW WATER. Coastal Engineering 2008. doi:10.1142/9789814277426_0241

Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001

Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem