- -

Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mares-Nasarre, Patricia es_ES
dc.contributor.author GÓMEZ-MARTÍN, M. ESTHER es_ES
dc.contributor.author Medina, Josep R. es_ES
dc.date.accessioned 2021-02-17T04:32:24Z
dc.date.available 2021-02-17T04:32:24Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161609
dc.description.abstract [EN] The crest elevation of mound breakwaters is usually designed considering a tolerable mean wave overtopping discharge. However, pedestrian safety, characterized by the overtopping layer thickness (OLT) and the overtopping flow velocity (OFV), is becoming more relevant due to the reduction of the crest freeboards of coastal structures. Studies in the literature focusing on OLT and OFV do not consider the bottom slope effect, even if it has a remarkable impact on mound breakwater design under depth-limited breaking wave conditions. Therefore, this research focuses on the influence of the bottom slope on OLT and OFV exceeded by 2% of incoming waves, hc,2% and uc,2%. A total of 235 2D physical tests were conducted on conventional mound breakwaters with a single-layer Cubipod® and double-layer rock and cube armors with 2% and 4% bottom slopes. Neural networks were used to determine the optimum point to estimate wave characteristics for hc,2% and uc,2% calculation; that point was located at a distance from the model toe of three times the water depth at the toe (hs) of the structure. The influence of the bottom slope is studied using trained neural networks with fixed wave conditions in the wave generation zone; hc,2% slightly decreases and uc,2% increases as the gradient of the bottom slope increases. es_ES
dc.description.sponsorship This research was funded by Ministerio de Economia y Competitividad and the Fondo Europeo de Desarrollo Regional (FEDER) under grant BIA2015-70436-R and RTI2018-101073-B-I00. The first author was also financially supported by the Ministerio de Educacion, Cultura y Deporte through the FPU program (Formacion de Profesorado Universitario) under grant FPU16/05081. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Journal of Marine Science and Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Mound breakwater es_ES
dc.subject Overtopping es_ES
dc.subject Overtopping layer thickness es_ES
dc.subject Overtopping flow velocity es_ES
dc.subject Bottom slope es_ES
dc.subject Breaking waves es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.title Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/jmse8010003 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIA2015-70436-R/ES/ESTABILIDAD HIDRAULICA DEL MANTO, BERMAS Y CORONACION DE DIQUES EN TALUD CON REBASE Y ROTURA POR FONDO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.description.bibliographicCitation Mares-Nasarre, P.; Gómez-Martín, ME.; Medina, JR. (2020). Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions. Journal of Marine Science and Engineering. 8(1):1-16. https://doi.org/10.3390/jmse8010003 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/jmse8010003 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2077-1312 es_ES
dc.relation.pasarela S\400320 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references www.overtopping-manual.com es_ES
dc.description.references Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322 es_ES
dc.description.references Nørgaard, J. Q. H., Lykke Andersen, T., & Burcharth, H. F. (2014). Distribution of individual wave overtopping volumes in shallow water wave conditions. Coastal Engineering, 83, 15-23. doi:10.1016/j.coastaleng.2013.09.003 es_ES
dc.description.references Molines, J., Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2019). Distribution of individual wave overtopping volumes on mound breakwaters. Coastal Engineering, 149, 15-27. doi:10.1016/j.coastaleng.2019.03.006 es_ES
dc.description.references Mares-Nasarre, P., Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2019). Overtopping layer thickness and overtopping flow velocity on mound breakwaters. Coastal Engineering, 154, 103561. doi:10.1016/j.coastaleng.2019.103561 es_ES
dc.description.references Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2017). Hydraulic stability of rock armors in breaking wave conditions. Coastal Engineering, 127, 55-67. doi:10.1016/j.coastaleng.2017.06.010 es_ES
dc.description.references Van Gent, M. R. A. (2003). WAVE OVERTOPPING EVENTS AT DIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0185 es_ES
dc.description.references Schüttrumpf, H., Möller, J., & Oumeraci, H. (2003). OVERTOPPING FLOW PARAMETERS ON THE INNER SLOPE OF SEADIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0178 es_ES
dc.description.references Gent, M. R. A. van. (2001). Wave Runup on Dikes with Shallow Foreshores. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(5), 254-262. doi:10.1061/(asce)0733-950x(2001)127:5(254) es_ES
dc.description.references Van der Meer, J. W., Hardeman, B., Steendam, G. J., Schuttrumpf, H., & Verheij, H. (2011). FLOW DEPTHS AND VELOCITIES AT CREST AND LANDWARD SLOPE OF A DIKE, IN THEORY AND WITH THE WAVE OVERTOPPING SIMULATOR. Coastal Engineering Proceedings, 1(32), 10. doi:10.9753/icce.v32.structures.10 es_ES
dc.description.references Lorke, S., Scheres, B., Schüttrumpf, H., Bornschein, A., & Pohl, R. (2012). PHYSICAL MODEL TESTS ON WAVE OVERTOPPING AND FLOW PROCESSES ON DIKE CRESTS INFLUENCED BY WAVE-CURRENT INTERACTION. Coastal Engineering Proceedings, 1(33), 34. doi:10.9753/icce.v33.waves.34 es_ES
dc.description.references Herrera, M. P., & Medina, J. R. (2015). Toe berm design for very shallow waters on steep sea bottoms. Coastal Engineering, 103, 67-77. doi:10.1016/j.coastaleng.2015.06.005 es_ES
dc.description.references Gómez-Martín, M. E., & Medina, J. R. (2014). Heterogeneous Packing and Hydraulic Stability of Cube and Cubipod Armor Units. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(1), 100-108. doi:10.1061/(asce)ww.1943-5460.0000223 es_ES
dc.description.references Argente, G., Gómez-Martín, M., & Medina, J. (2018). Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. Journal of Marine Science and Engineering, 6(4), 143. doi:10.3390/jmse6040143 es_ES
dc.description.references Gómez-Martín, M., Herrera, M., Gonzalez-Escriva, J., & Medina, J. (2018). Cubipod® Armor Design in Depth-Limited Regular Wave-Breaking Conditions. Journal of Marine Science and Engineering, 6(4), 150. doi:10.3390/jmse6040150 es_ES
dc.description.references Battjes, J. A., & Groenendijk, H. W. (2000). Wave height distributions on shallow foreshores. Coastal Engineering, 40(3), 161-182. doi:10.1016/s0378-3839(00)00007-7 es_ES
dc.description.references Victor, L., van der Meer, J. W., & Troch, P. (2012). Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards. Coastal Engineering, 64, 87-101. doi:10.1016/j.coastaleng.2012.01.003 es_ES
dc.description.references Verhagen, H. J., van Vledder, G., & Arab, S. E. (2009). A PRACTICAL METHOD FOR DESIGN OF COASTAL STRUCTURES IN SHALLOW WATER. Coastal Engineering 2008. doi:10.1142/9789814277426_0241 es_ES
dc.description.references Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 es_ES
dc.description.references Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem