Mostrar el registro sencillo del ítem
dc.contributor.author | Mares-Nasarre, Patricia | es_ES |
dc.contributor.author | GÓMEZ-MARTÍN, M. ESTHER | es_ES |
dc.contributor.author | Medina, Josep R. | es_ES |
dc.date.accessioned | 2021-02-17T04:32:24Z | |
dc.date.available | 2021-02-17T04:32:24Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161609 | |
dc.description.abstract | [EN] The crest elevation of mound breakwaters is usually designed considering a tolerable mean wave overtopping discharge. However, pedestrian safety, characterized by the overtopping layer thickness (OLT) and the overtopping flow velocity (OFV), is becoming more relevant due to the reduction of the crest freeboards of coastal structures. Studies in the literature focusing on OLT and OFV do not consider the bottom slope effect, even if it has a remarkable impact on mound breakwater design under depth-limited breaking wave conditions. Therefore, this research focuses on the influence of the bottom slope on OLT and OFV exceeded by 2% of incoming waves, hc,2% and uc,2%. A total of 235 2D physical tests were conducted on conventional mound breakwaters with a single-layer Cubipod® and double-layer rock and cube armors with 2% and 4% bottom slopes. Neural networks were used to determine the optimum point to estimate wave characteristics for hc,2% and uc,2% calculation; that point was located at a distance from the model toe of three times the water depth at the toe (hs) of the structure. The influence of the bottom slope is studied using trained neural networks with fixed wave conditions in the wave generation zone; hc,2% slightly decreases and uc,2% increases as the gradient of the bottom slope increases. | es_ES |
dc.description.sponsorship | This research was funded by Ministerio de Economia y Competitividad and the Fondo Europeo de Desarrollo Regional (FEDER) under grant BIA2015-70436-R and RTI2018-101073-B-I00. The first author was also financially supported by the Ministerio de Educacion, Cultura y Deporte through the FPU program (Formacion de Profesorado Universitario) under grant FPU16/05081. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Journal of Marine Science and Engineering | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Mound breakwater | es_ES |
dc.subject | Overtopping | es_ES |
dc.subject | Overtopping layer thickness | es_ES |
dc.subject | Overtopping flow velocity | es_ES |
dc.subject | Bottom slope | es_ES |
dc.subject | Breaking waves | es_ES |
dc.subject.classification | INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES | es_ES |
dc.title | Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/jmse8010003 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIA2015-70436-R/ES/ESTABILIDAD HIDRAULICA DEL MANTO, BERMAS Y CORONACION DE DIQUES EN TALUD CON REBASE Y ROTURA POR FONDO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU16%2F05081/ES/FPU16%2F05081/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto del Transporte y Territorio - Institut del Transport i Territori | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports | es_ES |
dc.description.bibliographicCitation | Mares-Nasarre, P.; Gómez-Martín, ME.; Medina, JR. (2020). Influence of Mild Bottom Slopes on the Overtopping Flow over Mound Breakwaters under Depth-Limited Breaking Wave Conditions. Journal of Marine Science and Engineering. 8(1):1-16. https://doi.org/10.3390/jmse8010003 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/jmse8010003 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2077-1312 | es_ES |
dc.relation.pasarela | S\400320 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | www.overtopping-manual.com | es_ES |
dc.description.references | Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322 | es_ES |
dc.description.references | Nørgaard, J. Q. H., Lykke Andersen, T., & Burcharth, H. F. (2014). Distribution of individual wave overtopping volumes in shallow water wave conditions. Coastal Engineering, 83, 15-23. doi:10.1016/j.coastaleng.2013.09.003 | es_ES |
dc.description.references | Molines, J., Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2019). Distribution of individual wave overtopping volumes on mound breakwaters. Coastal Engineering, 149, 15-27. doi:10.1016/j.coastaleng.2019.03.006 | es_ES |
dc.description.references | Mares-Nasarre, P., Argente, G., Gómez-Martín, M. E., & Medina, J. R. (2019). Overtopping layer thickness and overtopping flow velocity on mound breakwaters. Coastal Engineering, 154, 103561. doi:10.1016/j.coastaleng.2019.103561 | es_ES |
dc.description.references | Herrera, M. P., Gómez-Martín, M. E., & Medina, J. R. (2017). Hydraulic stability of rock armors in breaking wave conditions. Coastal Engineering, 127, 55-67. doi:10.1016/j.coastaleng.2017.06.010 | es_ES |
dc.description.references | Van Gent, M. R. A. (2003). WAVE OVERTOPPING EVENTS AT DIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0185 | es_ES |
dc.description.references | Schüttrumpf, H., Möller, J., & Oumeraci, H. (2003). OVERTOPPING FLOW PARAMETERS ON THE INNER SLOPE OF SEADIKES. Coastal Engineering 2002. doi:10.1142/9789812791306_0178 | es_ES |
dc.description.references | Gent, M. R. A. van. (2001). Wave Runup on Dikes with Shallow Foreshores. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(5), 254-262. doi:10.1061/(asce)0733-950x(2001)127:5(254) | es_ES |
dc.description.references | Van der Meer, J. W., Hardeman, B., Steendam, G. J., Schuttrumpf, H., & Verheij, H. (2011). FLOW DEPTHS AND VELOCITIES AT CREST AND LANDWARD SLOPE OF A DIKE, IN THEORY AND WITH THE WAVE OVERTOPPING SIMULATOR. Coastal Engineering Proceedings, 1(32), 10. doi:10.9753/icce.v32.structures.10 | es_ES |
dc.description.references | Lorke, S., Scheres, B., Schüttrumpf, H., Bornschein, A., & Pohl, R. (2012). PHYSICAL MODEL TESTS ON WAVE OVERTOPPING AND FLOW PROCESSES ON DIKE CRESTS INFLUENCED BY WAVE-CURRENT INTERACTION. Coastal Engineering Proceedings, 1(33), 34. doi:10.9753/icce.v33.waves.34 | es_ES |
dc.description.references | Herrera, M. P., & Medina, J. R. (2015). Toe berm design for very shallow waters on steep sea bottoms. Coastal Engineering, 103, 67-77. doi:10.1016/j.coastaleng.2015.06.005 | es_ES |
dc.description.references | Gómez-Martín, M. E., & Medina, J. R. (2014). Heterogeneous Packing and Hydraulic Stability of Cube and Cubipod Armor Units. Journal of Waterway, Port, Coastal, and Ocean Engineering, 140(1), 100-108. doi:10.1061/(asce)ww.1943-5460.0000223 | es_ES |
dc.description.references | Argente, G., Gómez-Martín, M., & Medina, J. (2018). Hydraulic Stability of the Armor Layer of Overtopped Breakwaters. Journal of Marine Science and Engineering, 6(4), 143. doi:10.3390/jmse6040143 | es_ES |
dc.description.references | Gómez-Martín, M., Herrera, M., Gonzalez-Escriva, J., & Medina, J. (2018). Cubipod® Armor Design in Depth-Limited Regular Wave-Breaking Conditions. Journal of Marine Science and Engineering, 6(4), 150. doi:10.3390/jmse6040150 | es_ES |
dc.description.references | Battjes, J. A., & Groenendijk, H. W. (2000). Wave height distributions on shallow foreshores. Coastal Engineering, 40(3), 161-182. doi:10.1016/s0378-3839(00)00007-7 | es_ES |
dc.description.references | Victor, L., van der Meer, J. W., & Troch, P. (2012). Probability distribution of individual wave overtopping volumes for smooth impermeable steep slopes with low crest freeboards. Coastal Engineering, 64, 87-101. doi:10.1016/j.coastaleng.2012.01.003 | es_ES |
dc.description.references | Verhagen, H. J., van Vledder, G., & Arab, S. E. (2009). A PRACTICAL METHOD FOR DESIGN OF COASTAL STRUCTURES IN SHALLOW WATER. Coastal Engineering 2008. doi:10.1142/9789814277426_0241 | es_ES |
dc.description.references | Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 | es_ES |
dc.description.references | Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |