Mostrar el registro sencillo del ítem
dc.contributor.author | Rodriguez, Isabelle![]() |
es_ES |
dc.contributor.author | Fenollosa Esteve, Roberto![]() |
es_ES |
dc.contributor.author | RAMIRO MANZANO, FERNANDO![]() |
es_ES |
dc.contributor.author | García-Aboal, Rocío![]() |
es_ES |
dc.contributor.author | Atienzar Corvillo, Pedro Enrique![]() |
es_ES |
dc.contributor.author | MESEGUER RICO, FRANCISCO JAVIER![]() |
es_ES |
dc.date.accessioned | 2021-02-17T04:32:27Z | |
dc.date.available | 2021-02-17T04:32:27Z | |
dc.date.issued | 2019-09-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161610 | |
dc.description.abstract | [EN] High refractive index nanowires are very attractive because of their waveguiding properties and their multiple applications. In this sense, metal halide perovskites, an emerging and appealing optoelectronic material, have also been tailored into nanowire structures. Here, we present an easy, low-cost and versatile method that has made possible to achieve nanowires of controlled and uniform width. The method has been applied here to all-inorganic and hybrid lead bromide perovskite (CsPbBr3 and CH3NH3PbBr3 respectively) materials. The procedure is based on the spin coating of precursor solutions, at room temperature, on a PDMS replica of the periodic grooves and lands of commercially available Compact Disc (CD) or Digital Versatile Disc (DVD) polycarbonate plates. The method can be applied for the synthesis of other material nanowires before being transferred onto other substrates. The obtained CsPbBr3 and CH3NH3PbBr3 nanowires exhibit high photoluminescence and guiding light properties along the material. | es_ES |
dc.description.sponsorship | The authors would like to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness (MIMECO) (Severo Ochoa (SEV-2016-0683), MAT2015-69669-P projects) and Generalitat Valenciana (Prometeo II/2017/026 Excellency project). P. A. acknowledges the Fundacion Ramon Areces (XVII Concurso Nacional para la adjudicacion de Ayudas a la Investigacion en Ciencias de la Vida y de la Materia) for its funding. F. R.-M. thanks the financial contribution of the Spanish Ministry of Economy and Competitiveness (MIMECO) through the program for young researchers support (TEC 2015 2015-74405-JIN). Finally, IR also thanks the Electron Microscopy Service of the Universitat Politecnica de Valencia for their support in FESEM image acquisition and FIB milling, as well as Ana Moreno for her help in template preparation. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Materials Chemistry Frontiers | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | High refrative index materials | es_ES |
dc.subject | Lead bromide perovskites | es_ES |
dc.subject | Photoluminescent materials | es_ES |
dc.subject | Light guiding materials | es_ES |
dc.subject | PDMS replica | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9qm00210c | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2015-69669-P/ES/OPTOLECTRONICA EN NANOCAVIDADES DE ALTO INDICE DE REFRACCION. DEL SILICIO A LA PEROVSKITA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2015-74405-JIN/ES/MICRO- Y NANO-CAVIDADES BASADAS EN PEROVSKITA HALOGENADA. CELULAS SOLARES Y EMISORES DE LUZ/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2017%2F026/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Rodriguez, I.; Fenollosa Esteve, R.; Ramiro Manzano, F.; García-Aboal, R.; Atienzar Corvillo, PE.; Meseguer Rico, FJ. (2019). Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Materials Chemistry Frontiers. 3(9):1754-1760. https://doi.org/10.1039/c9qm00210c | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9qm00210c | es_ES |
dc.description.upvformatpinicio | 1754 | es_ES |
dc.description.upvformatpfin | 1760 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 3 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.eissn | 2052-1537 | es_ES |
dc.relation.pasarela | S\410199 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Fundación Ramón Areces | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Semiconductor nanowires: From next-generation Electronics to Sustainable Energy , ed. W. Lu and J. Xiang , RSC Smart Materials Series, 2015 | es_ES |
dc.description.references | Semiconductor Nanowires, Materials, Synthesis, Characterization and Applications , ed. J. Arbiol and Q. Xiong , Woodhead Publishing , 2015 | es_ES |
dc.description.references | Peng, K.-Q., Wang, X., Li, L., Hu, Y., & Lee, S.-T. (2013). Silicon nanowires for advanced energy conversion and storage. Nano Today, 8(1), 75-97. doi:10.1016/j.nantod.2012.12.009 | es_ES |
dc.description.references | M. Mikolajick and W. M.Weber , Silicon Nanowires in Anisotropic Nanomaterials , ed. Q. Li , Springer , 2015 , pp. 1–25 | es_ES |
dc.description.references | Hasan, M., Huq, M. F., & Mahmood, Z. H. (2013). A review on electronic and optical properties of silicon nanowire and its different growth techniques. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-151 | es_ES |
dc.description.references | Liu, Z., Mi, Y., Guan, X., Su, Z., Liu, X., & Wu, T. (2018). Morphology-Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 6(17), 1800413. doi:10.1002/adom.201800413 | es_ES |
dc.description.references | Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y., & Jin, S. (2019). Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 4(3), 169-188. doi:10.1038/s41578-019-0080-9 | es_ES |
dc.description.references | Manser, J. S., Christians, J. A., & Kamat, P. V. (2016). Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 116(21), 12956-13008. doi:10.1021/acs.chemrev.6b00136 | es_ES |
dc.description.references | Kitazawa, N., Watanabe, Y., & Nakamura, Y. (2002). Journal of Materials Science, 37(17), 3585-3587. doi:10.1023/a:1016584519829 | es_ES |
dc.description.references | Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k | es_ES |
dc.description.references | Longo, G., La-Placa, M.-G., Sessolo, M., & Bolink, H. J. (2017). High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films. ChemSusChem, 10(19), 3788-3793. doi:10.1002/cssc.201701265 | es_ES |
dc.description.references | Richter, J. M., Abdi-Jalebi, M., Sadhanala, A., Tabachnyk, M., Rivett, J. P. H., Pazos-Outón, L. M., … Friend, R. H. (2016). Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 7(1). doi:10.1038/ncomms13941 | es_ES |
dc.description.references | De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., … Ballif, C. (2014). Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5(6), 1035-1039. doi:10.1021/jz500279b | es_ES |
dc.description.references | Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2013). High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials, 26(10), 1584-1589. doi:10.1002/adma.201305172 | es_ES |
dc.description.references | Sutherland, B. R., & Sargent, E. H. (2016). Perovskite photonic sources. Nature Photonics, 10(5), 295-302. doi:10.1038/nphoton.2016.62 | es_ES |
dc.description.references | Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., … Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1). doi:10.1126/sciadv.1501170 | es_ES |
dc.description.references | Jung, H. S., & Park, N.-G. (2014). Perovskite Solar Cells: From Materials to Devices. Small, 11(1), 10-25. doi:10.1002/smll.201402767 | es_ES |
dc.description.references | Zhang, W., Eperon, G. E., & Snaith, H. J. (2016). Metal halide perovskites for energy applications. Nature Energy, 1(6). doi:10.1038/nenergy.2016.48 | es_ES |
dc.description.references | Kim, Y.-H., Wolf, C., Kim, Y.-T., Cho, H., Kwon, W., Do, S., … Lee, T.-W. (2017). Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano, 11(7), 6586-6593. doi:10.1021/acsnano.6b07617 | es_ES |
dc.description.references | Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N., & Mhaisalkar, S. G. (2016). Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials, 28(32), 6804-6834. doi:10.1002/adma.201600669 | es_ES |
dc.description.references | Wang, N., Cheng, L., Ge, R., Zhang, S., Miao, Y., Zou, W., … Huang, W. (2016). Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 10(11), 699-704. doi:10.1038/nphoton.2016.185 | es_ES |
dc.description.references | Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., … Zhu, X.-Y. (2015). Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 14(6), 636-642. doi:10.1038/nmat4271 | es_ES |
dc.description.references | Harwell, J. R., Whitworth, G. L., Turnbull, G. A., & Samuel, I. D. W. (2017). Green Perovskite Distributed Feedback Lasers. Scientific Reports, 7(1). doi:10.1038/s41598-017-11569-3 | es_ES |
dc.description.references | Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P., & Giebink, N. C. (2017). Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photonics, 11(12), 784-788. doi:10.1038/s41566-017-0047-6 | es_ES |
dc.description.references | Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., … Sum, T. C. (2014). Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13(5), 476-480. doi:10.1038/nmat3911 | es_ES |
dc.description.references | Zhang, S., Audebert, P., Wei, Y., Al Choueiry, A., Lanty, G., Bréhier, A., … Deleporte, E. (2010). Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials, 3(5), 3385-3406. doi:10.3390/ma3053385 | es_ES |
dc.description.references | Shoaib, M., Zhang, X., Wang, X., Zhou, H., Xu, T., Wang, X., … Pan, A. (2017). Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors. Journal of the American Chemical Society, 139(44), 15592-15595. doi:10.1021/jacs.7b08818 | es_ES |
dc.description.references | Xing, J., Liu, X. F., Zhang, Q., Ha, S. T., Yuan, Y. W., Shen, C., … Xiong, Q. (2015). Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 15(7), 4571-4577. doi:10.1021/acs.nanolett.5b01166 | es_ES |
dc.description.references | Gu, L., Tavakoli, M. M., Zhang, D., Zhang, Q., Waleed, A., Xiao, Y., … Fan, Z. (2016). 3D Arrays of 1024-Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Advanced Materials, 28(44), 9713-9721. doi:10.1002/adma.201601603 | es_ES |
dc.description.references | Wang, Y., Sun, X., Shivanna, R., Yang, Y., Chen, Z., Guo, Y., … Shi, J. (2016). Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Letters, 16(12), 7974-7981. doi:10.1021/acs.nanolett.6b04297 | es_ES |
dc.description.references | Park, K., Lee, J. W., Kim, J. D., Han, N. S., Jang, D. M., Jeong, S., … Song, J. K. (2016). Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. The Journal of Physical Chemistry Letters, 7(18), 3703-3710. doi:10.1021/acs.jpclett.6b01821 | es_ES |
dc.description.references | Chen, J., Fu, Y., Samad, L., Dang, L., Zhao, Y., Shen, S., … Jin, S. (2016). Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 17(1), 460-466. doi:10.1021/acs.nanolett.6b04450 | es_ES |
dc.description.references | Zhou, H., Yuan, S., Wang, X., Xu, T., Wang, X., Li, H., … Pan, A. (2016). Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 11(2), 1189-1195. doi:10.1021/acsnano.6b07374 | es_ES |
dc.description.references | Wang, X., Zhou, H., Yuan, S., Zheng, W., Jiang, Y., Zhuang, X., … Pan, A. (2017). Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 10(10), 3385-3395. doi:10.1007/s12274-017-1551-1 | es_ES |
dc.description.references | Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L., & Joselevich, E. (2017). Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Letters, 18(1), 424-433. doi:10.1021/acs.nanolett.7b04310 | es_ES |
dc.description.references | Chen, J., Luo, Z., Fu, Y., Wang, X., Czech, K. J., Shen, S., … Jin, S. (2019). Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX3; X = Br, I) Nanowires. ACS Energy Letters, 4(5), 1045-1052. doi:10.1021/acsenergylett.9b00543 | es_ES |
dc.description.references | Eaton, S. W., Lai, M., Gibson, N. A., Wong, A. B., Dou, L., Ma, J., … Yang, P. (2016). Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences, 113(8), 1993-1998. doi:10.1073/pnas.1600789113 | es_ES |
dc.description.references | Tavakoli, M. M., Waleed, A., Gu, L., Zhang, D., Tavakoli, R., Lei, B., … Fan, Z. (2017). A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. Nanoscale, 9(18), 5828-5834. doi:10.1039/c7nr00444c | es_ES |
dc.description.references | Im, J.-H., Luo, J., Franckevičius, M., Pellet, N., Gao, P., Moehl, T., … Park, N.-G. (2015). Nanowire Perovskite Solar Cell. Nano Letters, 15(3), 2120-2126. doi:10.1021/acs.nanolett.5b00046 | es_ES |
dc.description.references | Wong, A. B., Lai, M., Eaton, S. W., Yu, Y., Lin, E., Dou, L., … Yang, P. (2015). Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 15(8), 5519-5524. doi:10.1021/acs.nanolett.5b02082 | es_ES |
dc.description.references | Deng, H., Dong, D., Qiao, K., Bu, L., Li, B., Yang, D., … Song, H. (2015). Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7(9), 4163-4170. doi:10.1039/c4nr06982j | es_ES |
dc.description.references | Spina, M., Bonvin, E., Sienkiewicz, A., Náfrádi, B., Forró, L., & Horváth, E. (2016). Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Scientific Reports, 6(1). doi:10.1038/srep19834 | es_ES |
dc.description.references | Ashley, M. J., O’Brien, M. N., Hedderick, K. R., Mason, J. A., Ross, M. B., & Mirkin, C. A. (2016). Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society, 138(32), 10096-10099. doi:10.1021/jacs.6b05901 | es_ES |
dc.description.references | Deng, W., Huang, L., Xu, X., Zhang, X., Jin, X., Lee, S.-T., & Jie, J. (2017). Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 17(4), 2482-2489. doi:10.1021/acs.nanolett.7b00166 | es_ES |
dc.description.references | Wang, S., Wang, K., Gu, Z., Wang, Y., Huang, C., Yi, N., … Song, Q. (2017). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Microrods for High-Quality Microlasers and Photodetectors. Advanced Optical Materials, 5(11), 1700023. doi:10.1002/adom.201700023 | es_ES |
dc.description.references | Petrov, A. A., Pellet, N., Seo, J.-Y., Belich, N. A., Kovalev, D. Y., Shevelkov, A. V., … Graetzel, M. (2016). New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 29(2), 587-594. doi:10.1021/acs.chemmater.6b03965 | es_ES |
dc.description.references | Fu, Y., Zhu, H., Stoumpos, C. C., Ding, Q., Wang, J., Kanatzidis, M. G., … Jin, S. (2016). Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 10(8), 7963-7972. doi:10.1021/acsnano.6b03916 | es_ES |
dc.description.references | Zhang, D., Eaton, S. W., Yu, Y., Dou, L., & Yang, P. (2015). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 137(29), 9230-9233. doi:10.1021/jacs.5b05404 | es_ES |
dc.description.references | Zhang, D., Yu, Y., Bekenstein, Y., Wong, A. B., Alivisatos, A. P., & Yang, P. (2016). Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 138(40), 13155-13158. doi:10.1021/jacs.6b08373 | es_ES |
dc.description.references | Fu, Y., Zhu, H., Schrader, A. W., Liang, D., Ding, Q., Joshi, P., … Jin, S. (2016). Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Letters, 16(2), 1000-1008. doi:10.1021/acs.nanolett.5b04053 | es_ES |
dc.description.references | Liu, P., He, X., Ren, J., Liao, Q., Yao, J., & Fu, H. (2017). Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 11(6), 5766-5773. doi:10.1021/acsnano.7b01351 | es_ES |
dc.description.references | Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604 | es_ES |
dc.description.references | Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994b | es_ES |
dc.description.references | Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k | es_ES |
dc.description.references | Brunetti, B., Cavallo, C., Ciccioli, A., Gigli, G., & Latini, A. (2016). On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Scientific Reports, 6(1). doi:10.1038/srep31896 | es_ES |
dc.description.references | Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., … Boyen, H.-G. (2015). Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 5(15), 1500477. doi:10.1002/aenm.201500477 | es_ES |
dc.description.references | Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. (2015). Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 7(1), 167-172. doi:10.1021/acs.jpclett.5b02597 | es_ES |
dc.description.references | Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., … Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997. doi:10.1039/c5ee03874j | es_ES |
dc.description.references | Service, R. F. (2016). Cesium fortifies next-generation solar cells. Science, 351(6269), 113-114. doi:10.1126/science.351.6269.113 | es_ES |
dc.description.references | Kang, J., & Wang, L.-W. (2017). High Defect Tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8(2), 489-493. doi:10.1021/acs.jpclett.6b02800 | es_ES |
dc.description.references | Pazos-Outón, L. M., Szumilo, M., Lamboll, R., Richter, J. M., Crespo-Quesada, M., Abdi-Jalebi, M., … Deschler, F. (2016). Photon recycling in lead iodide perovskite solar cells. Science, 351(6280), 1430-1433. doi:10.1126/science.aaf1168 | es_ES |
dc.description.references | Dursun, I., Zheng, Y., Guo, T., De Bastiani, M., Turedi, B., Sinatra, L., … Malko, A. V. (2018). Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 3(7), 1492-1498. doi:10.1021/acsenergylett.8b00758 | es_ES |
dc.description.references | F. Ramiro-Manzano , R.García-Aboal , R.Fenollosa , S.Basi , I.Rodriguez , P.Atienzar and F.Meseguer , Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry–Pérot resonances, 2019, submitted | es_ES |
dc.description.references | Ramiro-Manzano, F., Bonet, E., Rodriguez, I., & Meseguer, F. (2010). Colloidal Crystal Thin Films Grown into Corrugated Surface Templates. Langmuir, 26(7), 4559-4562. doi:10.1021/la904396m | es_ES |
dc.description.references | García-Aboal, R., Fenollosa, R., Ramiro-Manzano, F., Rodríguez, I., Meseguer, F., & Atienzar, P. (2018). Single Crystal Growth of Hybrid Lead Bromide Perovskites Using a Spin-Coating Method. ACS Omega, 3(5), 5229-5236. doi:10.1021/acsomega.8b00447 | es_ES |
dc.description.references | Fenollosa, R., Garín, M., & Meseguer, F. (2016). Spherical silicon photonic microcavities: From amorphous to polycrystalline. Physical Review B, 93(23). doi:10.1103/physrevb.93.235307 | es_ES |