- -

Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties

Mostrar el registro completo del ítem

Rodriguez, I.; Fenollosa Esteve, R.; Ramiro Manzano, F.; García-Aboal, R.; Atienzar Corvillo, PE.; Meseguer Rico, FJ. (2019). Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Materials Chemistry Frontiers. 3(9):1754-1760. https://doi.org/10.1039/c9qm00210c

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161610

Ficheros en el ítem

Metadatos del ítem

Título: Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties
Autor: Rodriguez, Isabelle Fenollosa Esteve, Roberto RAMIRO MANZANO, FERNANDO García-Aboal, Rocío Atienzar Corvillo, Pedro Enrique MESEGUER RICO, FRANCISCO JAVIER
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] High refractive index nanowires are very attractive because of their waveguiding properties and their multiple applications. In this sense, metal halide perovskites, an emerging and appealing optoelectronic material, ...[+]
Palabras clave: High refrative index materials , Lead bromide perovskites , Photoluminescent materials , Light guiding materials , PDMS replica
Derechos de uso: Reserva de todos los derechos
Fuente:
Materials Chemistry Frontiers. (eissn: 2052-1537 )
DOI: 10.1039/c9qm00210c
Editorial:
Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9qm00210c
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-69669-P/ES/OPTOLECTRONICA EN NANOCAVIDADES DE ALTO INDICE DE REFRACCION. DEL SILICIO A LA PEROVSKITA/
info:eu-repo/grantAgreement/MINECO//TEC2015-74405-JIN/ES/MICRO- Y NANO-CAVIDADES BASADAS EN PEROVSKITA HALOGENADA. CELULAS SOLARES Y EMISORES DE LUZ/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2017%2F026/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors would like to gratefully acknowledge the financial support from the Spanish Ministry of Economy and Competitiveness (MIMECO) (Severo Ochoa (SEV-2016-0683), MAT2015-69669-P projects) and Generalitat Valenciana ...[+]
Tipo: Artículo

References

Semiconductor nanowires: From next-generation Electronics to Sustainable Energy , ed. W. Lu and J. Xiang , RSC Smart Materials Series, 2015

Semiconductor Nanowires, Materials, Synthesis, Characterization and Applications , ed. J. Arbiol and Q. Xiong , Woodhead Publishing , 2015

Peng, K.-Q., Wang, X., Li, L., Hu, Y., & Lee, S.-T. (2013). Silicon nanowires for advanced energy conversion and storage. Nano Today, 8(1), 75-97. doi:10.1016/j.nantod.2012.12.009 [+]
Semiconductor nanowires: From next-generation Electronics to Sustainable Energy , ed. W. Lu and J. Xiang , RSC Smart Materials Series, 2015

Semiconductor Nanowires, Materials, Synthesis, Characterization and Applications , ed. J. Arbiol and Q. Xiong , Woodhead Publishing , 2015

Peng, K.-Q., Wang, X., Li, L., Hu, Y., & Lee, S.-T. (2013). Silicon nanowires for advanced energy conversion and storage. Nano Today, 8(1), 75-97. doi:10.1016/j.nantod.2012.12.009

M. Mikolajick and W. M.Weber , Silicon Nanowires in Anisotropic Nanomaterials , ed. Q. Li , Springer , 2015 , pp. 1–25

Hasan, M., Huq, M. F., & Mahmood, Z. H. (2013). A review on electronic and optical properties of silicon nanowire and its different growth techniques. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-151

Liu, Z., Mi, Y., Guan, X., Su, Z., Liu, X., & Wu, T. (2018). Morphology-Tailored Halide Perovskite Platelets and Wires: From Synthesis, Properties to Optoelectronic Devices. Advanced Optical Materials, 6(17), 1800413. doi:10.1002/adom.201800413

Fu, Y., Zhu, H., Chen, J., Hautzinger, M. P., Zhu, X.-Y., & Jin, S. (2019). Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nature Reviews Materials, 4(3), 169-188. doi:10.1038/s41578-019-0080-9

Manser, J. S., Christians, J. A., & Kamat, P. V. (2016). Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 116(21), 12956-13008. doi:10.1021/acs.chemrev.6b00136

Kitazawa, N., Watanabe, Y., & Nakamura, Y. (2002). Journal of Materials Science, 37(17), 3585-3587. doi:10.1023/a:1016584519829

Albero, J., & García, H. (2017). Luminescence control in hybrid perovskites and their applications. Journal of Materials Chemistry C, 5(17), 4098-4110. doi:10.1039/c7tc00714k

Longo, G., La-Placa, M.-G., Sessolo, M., & Bolink, H. J. (2017). High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films. ChemSusChem, 10(19), 3788-3793. doi:10.1002/cssc.201701265

Richter, J. M., Abdi-Jalebi, M., Sadhanala, A., Tabachnyk, M., Rivett, J. P. H., Pazos-Outón, L. M., … Friend, R. H. (2016). Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nature Communications, 7(1). doi:10.1038/ncomms13941

De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., … Ballif, C. (2014). Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. The Journal of Physical Chemistry Letters, 5(6), 1035-1039. doi:10.1021/jz500279b

Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J., & Herz, L. M. (2013). High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites. Advanced Materials, 26(10), 1584-1589. doi:10.1002/adma.201305172

Sutherland, B. R., & Sargent, E. H. (2016). Perovskite photonic sources. Nature Photonics, 10(5), 295-302. doi:10.1038/nphoton.2016.62

Bi, D., Tress, W., Dar, M. I., Gao, P., Luo, J., Renevier, C., … Hagfeldt, A. (2016). Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2(1). doi:10.1126/sciadv.1501170

Jung, H. S., & Park, N.-G. (2014). Perovskite Solar Cells: From Materials to Devices. Small, 11(1), 10-25. doi:10.1002/smll.201402767

Zhang, W., Eperon, G. E., & Snaith, H. J. (2016). Metal halide perovskites for energy applications. Nature Energy, 1(6). doi:10.1038/nenergy.2016.48

Kim, Y.-H., Wolf, C., Kim, Y.-T., Cho, H., Kwon, W., Do, S., … Lee, T.-W. (2017). Highly Efficient Light-Emitting Diodes of Colloidal Metal–Halide Perovskite Nanocrystals beyond Quantum Size. ACS Nano, 11(7), 6586-6593. doi:10.1021/acsnano.6b07617

Veldhuis, S. A., Boix, P. P., Yantara, N., Li, M., Sum, T. C., Mathews, N., & Mhaisalkar, S. G. (2016). Perovskite Materials for Light-Emitting Diodes and Lasers. Advanced Materials, 28(32), 6804-6834. doi:10.1002/adma.201600669

Wang, N., Cheng, L., Ge, R., Zhang, S., Miao, Y., Zou, W., … Huang, W. (2016). Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 10(11), 699-704. doi:10.1038/nphoton.2016.185

Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., … Zhu, X.-Y. (2015). Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nature Materials, 14(6), 636-642. doi:10.1038/nmat4271

Harwell, J. R., Whitworth, G. L., Turnbull, G. A., & Samuel, I. D. W. (2017). Green Perovskite Distributed Feedback Lasers. Scientific Reports, 7(1). doi:10.1038/s41598-017-11569-3

Jia, Y., Kerner, R. A., Grede, A. J., Rand, B. P., & Giebink, N. C. (2017). Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nature Photonics, 11(12), 784-788. doi:10.1038/s41566-017-0047-6

Xing, G., Mathews, N., Lim, S. S., Yantara, N., Liu, X., Sabba, D., … Sum, T. C. (2014). Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 13(5), 476-480. doi:10.1038/nmat3911

Zhang, S., Audebert, P., Wei, Y., Al Choueiry, A., Lanty, G., Bréhier, A., … Deleporte, E. (2010). Preparations and Characterizations of Luminescent Two Dimensional Organic-inorganic Perovskite Semiconductors. Materials, 3(5), 3385-3406. doi:10.3390/ma3053385

Shoaib, M., Zhang, X., Wang, X., Zhou, H., Xu, T., Wang, X., … Pan, A. (2017). Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors. Journal of the American Chemical Society, 139(44), 15592-15595. doi:10.1021/jacs.7b08818

Xing, J., Liu, X. F., Zhang, Q., Ha, S. T., Yuan, Y. W., Shen, C., … Xiong, Q. (2015). Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. Nano Letters, 15(7), 4571-4577. doi:10.1021/acs.nanolett.5b01166

Gu, L., Tavakoli, M. M., Zhang, D., Zhang, Q., Waleed, A., Xiao, Y., … Fan, Z. (2016). 3D Arrays of 1024-Pixel Image Sensors based on Lead Halide Perovskite Nanowires. Advanced Materials, 28(44), 9713-9721. doi:10.1002/adma.201601603

Wang, Y., Sun, X., Shivanna, R., Yang, Y., Chen, Z., Guo, Y., … Shi, J. (2016). Photon Transport in One-Dimensional Incommensurately Epitaxial CsPbX3 Arrays. Nano Letters, 16(12), 7974-7981. doi:10.1021/acs.nanolett.6b04297

Park, K., Lee, J. W., Kim, J. D., Han, N. S., Jang, D. M., Jeong, S., … Song, J. K. (2016). Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. The Journal of Physical Chemistry Letters, 7(18), 3703-3710. doi:10.1021/acs.jpclett.6b01821

Chen, J., Fu, Y., Samad, L., Dang, L., Zhao, Y., Shen, S., … Jin, S. (2016). Vapor-Phase Epitaxial Growth of Aligned Nanowire Networks of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Letters, 17(1), 460-466. doi:10.1021/acs.nanolett.6b04450

Zhou, H., Yuan, S., Wang, X., Xu, T., Wang, X., Li, H., … Pan, A. (2016). Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. ACS Nano, 11(2), 1189-1195. doi:10.1021/acsnano.6b07374

Wang, X., Zhou, H., Yuan, S., Zheng, W., Jiang, Y., Zhuang, X., … Pan, A. (2017). Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Research, 10(10), 3385-3395. doi:10.1007/s12274-017-1551-1

Oksenberg, E., Sanders, E., Popovitz-Biro, R., Houben, L., & Joselevich, E. (2017). Surface-Guided CsPbBr3 Perovskite Nanowires on Flat and Faceted Sapphire with Size-Dependent Photoluminescence and Fast Photoconductive Response. Nano Letters, 18(1), 424-433. doi:10.1021/acs.nanolett.7b04310

Chen, J., Luo, Z., Fu, Y., Wang, X., Czech, K. J., Shen, S., … Jin, S. (2019). Tin(IV)-Tolerant Vapor-Phase Growth and Photophysical Properties of Aligned Cesium Tin Halide Perovskite (CsSnX3; X = Br, I) Nanowires. ACS Energy Letters, 4(5), 1045-1052. doi:10.1021/acsenergylett.9b00543

Eaton, S. W., Lai, M., Gibson, N. A., Wong, A. B., Dou, L., Ma, J., … Yang, P. (2016). Lasing in robust cesium lead halide perovskite nanowires. Proceedings of the National Academy of Sciences, 113(8), 1993-1998. doi:10.1073/pnas.1600789113

Tavakoli, M. M., Waleed, A., Gu, L., Zhang, D., Tavakoli, R., Lei, B., … Fan, Z. (2017). A non-catalytic vapor growth regime for organohalide perovskite nanowires using anodic aluminum oxide templates. Nanoscale, 9(18), 5828-5834. doi:10.1039/c7nr00444c

Im, J.-H., Luo, J., Franckevičius, M., Pellet, N., Gao, P., Moehl, T., … Park, N.-G. (2015). Nanowire Perovskite Solar Cell. Nano Letters, 15(3), 2120-2126. doi:10.1021/acs.nanolett.5b00046

Wong, A. B., Lai, M., Eaton, S. W., Yu, Y., Lin, E., Dou, L., … Yang, P. (2015). Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes. Nano Letters, 15(8), 5519-5524. doi:10.1021/acs.nanolett.5b02082

Deng, H., Dong, D., Qiao, K., Bu, L., Li, B., Yang, D., … Song, H. (2015). Growth, patterning and alignment of organolead iodide perovskite nanowires for optoelectronic devices. Nanoscale, 7(9), 4163-4170. doi:10.1039/c4nr06982j

Spina, M., Bonvin, E., Sienkiewicz, A., Náfrádi, B., Forró, L., & Horváth, E. (2016). Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Scientific Reports, 6(1). doi:10.1038/srep19834

Ashley, M. J., O’Brien, M. N., Hedderick, K. R., Mason, J. A., Ross, M. B., & Mirkin, C. A. (2016). Templated Synthesis of Uniform Perovskite Nanowire Arrays. Journal of the American Chemical Society, 138(32), 10096-10099. doi:10.1021/jacs.6b05901

Deng, W., Huang, L., Xu, X., Zhang, X., Jin, X., Lee, S.-T., & Jie, J. (2017). Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 17(4), 2482-2489. doi:10.1021/acs.nanolett.7b00166

Wang, S., Wang, K., Gu, Z., Wang, Y., Huang, C., Yi, N., … Song, Q. (2017). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Microrods for High-Quality Microlasers and Photodetectors. Advanced Optical Materials, 5(11), 1700023. doi:10.1002/adom.201700023

Petrov, A. A., Pellet, N., Seo, J.-Y., Belich, N. A., Kovalev, D. Y., Shevelkov, A. V., … Graetzel, M. (2016). New Insight into the Formation of Hybrid Perovskite Nanowires via Structure Directing Adducts. Chemistry of Materials, 29(2), 587-594. doi:10.1021/acs.chemmater.6b03965

Fu, Y., Zhu, H., Stoumpos, C. C., Ding, Q., Wang, J., Kanatzidis, M. G., … Jin, S. (2016). Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 10(8), 7963-7972. doi:10.1021/acsnano.6b03916

Zhang, D., Eaton, S. W., Yu, Y., Dou, L., & Yang, P. (2015). Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 137(29), 9230-9233. doi:10.1021/jacs.5b05404

Zhang, D., Yu, Y., Bekenstein, Y., Wong, A. B., Alivisatos, A. P., & Yang, P. (2016). Ultrathin Colloidal Cesium Lead Halide Perovskite Nanowires. Journal of the American Chemical Society, 138(40), 13155-13158. doi:10.1021/jacs.6b08373

Fu, Y., Zhu, H., Schrader, A. W., Liang, D., Ding, Q., Joshi, P., … Jin, S. (2016). Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Nano Letters, 16(2), 1000-1008. doi:10.1021/acs.nanolett.5b04053

Liu, P., He, X., Ren, J., Liao, Q., Yao, J., & Fu, H. (2017). Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays. ACS Nano, 11(6), 5766-5773. doi:10.1021/acsnano.7b01351

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338(6107), 643-647. doi:10.1126/science.1228604

Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970-8980. doi:10.1039/c4ta04994b

Berhe, T. A., Su, W.-N., Chen, C.-H., Pan, C.-J., Cheng, J.-H., Chen, H.-M., … Hwang, B.-J. (2016). Organometal halide perovskite solar cells: degradation and stability. Energy & Environmental Science, 9(2), 323-356. doi:10.1039/c5ee02733k

Brunetti, B., Cavallo, C., Ciccioli, A., Gigli, G., & Latini, A. (2016). On the Thermal and Thermodynamic (In)Stability of Methylammonium Lead Halide Perovskites. Scientific Reports, 6(1). doi:10.1038/srep31896

Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., … Boyen, H.-G. (2015). Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials, 5(15), 1500477. doi:10.1002/aenm.201500477

Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., & Cahen, D. (2015). Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 7(1), 167-172. doi:10.1021/acs.jpclett.5b02597

Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., … Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 9(6), 1989-1997. doi:10.1039/c5ee03874j

Service, R. F. (2016). Cesium fortifies next-generation solar cells. Science, 351(6269), 113-114. doi:10.1126/science.351.6269.113

Kang, J., & Wang, L.-W. (2017). High Defect Tolerance in Lead Halide Perovskite CsPbBr3. The Journal of Physical Chemistry Letters, 8(2), 489-493. doi:10.1021/acs.jpclett.6b02800

Pazos-Outón, L. M., Szumilo, M., Lamboll, R., Richter, J. M., Crespo-Quesada, M., Abdi-Jalebi, M., … Deschler, F. (2016). Photon recycling in lead iodide perovskite solar cells. Science, 351(6280), 1430-1433. doi:10.1126/science.aaf1168

Dursun, I., Zheng, Y., Guo, T., De Bastiani, M., Turedi, B., Sinatra, L., … Malko, A. V. (2018). Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. ACS Energy Letters, 3(7), 1492-1498. doi:10.1021/acsenergylett.8b00758

F. Ramiro-Manzano , R.García-Aboal , R.Fenollosa , S.Basi , I.Rodriguez , P.Atienzar and F.Meseguer , Optical properties of organic/inorganic perovskite microcrystals through the characterization of Fabry–Pérot resonances, 2019, submitted

Ramiro-Manzano, F., Bonet, E., Rodriguez, I., & Meseguer, F. (2010). Colloidal Crystal Thin Films Grown into Corrugated Surface Templates. Langmuir, 26(7), 4559-4562. doi:10.1021/la904396m

García-Aboal, R., Fenollosa, R., Ramiro-Manzano, F., Rodríguez, I., Meseguer, F., & Atienzar, P. (2018). Single Crystal Growth of Hybrid Lead Bromide Perovskites Using a Spin-Coating Method. ACS Omega, 3(5), 5229-5236. doi:10.1021/acsomega.8b00447

Fenollosa, R., Garín, M., & Meseguer, F. (2016). Spherical silicon photonic microcavities: From amorphous to polycrystalline. Physical Review B, 93(23). doi:10.1103/physrevb.93.235307

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem