Benítez, J., & Thome, N. (2006). {k}-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 28(1), 9-25. doi:10.1137/s0895479803437384
Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2014). On a matrix group constructed from an {R,s+1,k}-potent matrix. Linear Algebra and its Applications, 461, 200-210. doi:10.1016/j.laa.2014.08.005
Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2018). Matrices A such that A+1R = RA⁎ with R = I. Linear Algebra and its Applications, 552, 85-104. doi:10.1016/j.laa.2018.04.010
[+]
Benítez, J., & Thome, N. (2006). {k}-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 28(1), 9-25. doi:10.1137/s0895479803437384
Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2014). On a matrix group constructed from an {R,s+1,k}-potent matrix. Linear Algebra and its Applications, 461, 200-210. doi:10.1016/j.laa.2014.08.005
Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2018). Matrices A such that A+1R = RA⁎ with R = I. Linear Algebra and its Applications, 552, 85-104. doi:10.1016/j.laa.2018.04.010
Ilisevic, D., & Thome, N. (2012). When is the hermitian/skew-hermitian part of a matrix a potent matrix? The Electronic Journal of Linear Algebra, 24. doi:10.13001/1081-3810.1582
Lebtahi, L., & Thome, N. (2012). Properties of a matrix group associated to a {K,s+1}-potent matrix. The Electronic Journal of Linear Algebra, 24. doi:10.13001/1081-3810.1578
Lebtahi, L., Romero, O., & Thome, N. (2012). Characterizations of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and applications. Linear Algebra and its Applications, 436(2), 293-306. doi:10.1016/j.laa.2010.11.034
Lebtahi, L., Stuart, J., Thome, N., & Weaver, J. R. (2013). Matrices A such thatRA=As+1RwhenRk=I. Linear Algebra and its Applications, 439(4), 1017-1023. doi:10.1016/j.laa.2012.10.034
Baksalary, O., & Trenkler, G. (2013). On k-potent matrices. The Electronic Journal of Linear Algebra, 26. doi:10.13001/1081-3810.1664
Du, H.-K., & Li, Y. (2005). The spectral characterization of generalized projections. Linear Algebra and its Applications, 400, 313-318. doi:10.1016/j.laa.2004.11.027
Lebtahi, L., & Thome, N. (2007). A note on k-generalized projections. Linear Algebra and its Applications, 420(2-3), 572-575. doi:10.1016/j.laa.2006.08.011
Tosic, M., Cvetkovic-Ilic, D., & Deng, C. (2011). The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors. The Electronic Journal of Linear Algebra, 22. doi:10.13001/1081-3810.1496
Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587
Lebtahi, L., Romero, Ó., & Thome, N. (2013). Algorithms for{K,s+1}-potent matrix constructions. Journal of Computational and Applied Mathematics, 249, 157-162. doi:10.1016/j.cam.2012.01.019
Lebtahi, L., Romero, Ó., & Thome, N. (2017). Algorithms for solving the inverse problem associated with KAK=As+1. Journal of Computational and Applied Mathematics, 309, 333-341. doi:10.1016/j.cam.2016.02.055
Lebtahi, L., Romero, Ó., & Thome, N. (2014). Generalized centro-invertible matrices with applications. Applied Mathematics Letters, 38, 106-109. doi:10.1016/j.aml.2014.07.008
Benítez, J., & Thome, N. (2005). Characterizations and linear combinations of k-generalized projectors. Linear Algebra and its Applications, 410, 150-159. doi:10.1016/j.laa.2005.03.007
Tao, D., & Yasuda, M. (2002). A Spectral Characterization of Generalized Real Symmetric Centrosymmetric and Generalized Real Symmetric Skew-Centrosymmetric Matrices. SIAM Journal on Matrix Analysis and Applications, 23(3), 885-895. doi:10.1137/s0895479801386730
Yasuda, M. (2012). Some properties of commuting and anti-commuting m-involutions. Acta Mathematica Scientia, 32(2), 631-644. doi:10.1016/s0252-9602(12)60044-7
Weaver, J. R. (1985). Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors. The American Mathematical Monthly, 92(10), 711-717. doi:10.1080/00029890.1985.11971719
Guo-Lin Li, & Zheng-He Feng. (2003). Mirror-transformations of matrices and their application on odd/even modal decomposition of mirror-symmetric multiconductor transmission line equations. IEEE Transactions on Advanced Packaging, 26(2), 172-181. doi:10.1109/tadvp.2003.817476
Yasuda, M. (2003). Spectral Characterizations for Hermitian Centrosymmetric K-Matrices and Hermitian Skew-Centrosymmetric K-Matrices. SIAM Journal on Matrix Analysis and Applications, 25(3), 601-605. doi:10.1137/s0895479802418835
Zhang, F. (1997). Quaternions and matrices of quaternions. Linear Algebra and its Applications, 251, 21-57. doi:10.1016/0024-3795(95)00543-9
[-]