- -

Spectral study of {R, s + 1, k}- and {R, s + 1, k, *}-potent matrices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Spectral study of {R, s + 1, k}- and {R, s + 1, k, *}-potent matrices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Catral, M. es_ES
dc.contributor.author Lebtahi, L. es_ES
dc.contributor.author Stuart, J. es_ES
dc.contributor.author Thome, Néstor es_ES
dc.date.accessioned 2021-02-17T04:32:30Z
dc.date.available 2021-02-17T04:32:30Z
dc.date.issued 2020-08-01 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161611
dc.description.abstract [EN] The {R, s +1, k}- and {R, s +1, k, *}-potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of {R, s + 1, k} -potent matrices is developed using characterizations involving an associated matrix pencil (A, R). The corresponding spectral study for {R, s+ 1, k, *}-potent matrices involves the pencil (A*, R). In order to present some properties, the relevance of the projector I - AA(#). where A(#) is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaternions. es_ES
dc.description.sponsorship This work has been partially supported by Ministerio de Economia, Industria y Competitividad, Spain (Red de Excelencia MTM2017-90682-REDT). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject K-involutory matrix es_ES
dc.subject S-potent matrix es_ES
dc.subject {R, s+1, k}-potent matrix es_ES
dc.subject Spectrum es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Spectral study of {R, s + 1, k}- and {R, s + 1, k, *}-potent matrices es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1016/j.cam.2019.112414 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Catral, M.; Lebtahi, L.; Stuart, J.; Thome, N. (2020). Spectral study of {R, s + 1, k}- and {R, s + 1, k, *}-potent matrices. Journal of Computational and Applied Mathematics. 373:1-13. https://doi.org/10.1016/j.cam.2019.112414 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename Numerical Analysis and Scientific Computing with Applications Conference (NASCA 2018) es_ES
dc.relation.conferencedate Julio 02-06,2018 es_ES
dc.relation.conferenceplace Kalamata, Greece es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2019.112414 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 373 es_ES
dc.relation.pasarela S\392398 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Benítez, J., & Thome, N. (2006). {k}-Group Periodic Matrices. SIAM Journal on Matrix Analysis and Applications, 28(1), 9-25. doi:10.1137/s0895479803437384 es_ES
dc.description.references Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2014). On a matrix group constructed from an {R,s+1,k}-potent matrix. Linear Algebra and its Applications, 461, 200-210. doi:10.1016/j.laa.2014.08.005 es_ES
dc.description.references Catral, M., Lebtahi, L., Stuart, J., & Thome, N. (2018). Matrices A such that A+1R = RA⁎ with R = I. Linear Algebra and its Applications, 552, 85-104. doi:10.1016/j.laa.2018.04.010 es_ES
dc.description.references Ilisevic, D., & Thome, N. (2012). When is the hermitian/skew-hermitian part of a matrix a potent matrix? The Electronic Journal of Linear Algebra, 24. doi:10.13001/1081-3810.1582 es_ES
dc.description.references Lebtahi, L., & Thome, N. (2012). Properties of a matrix group associated to a {K,s+1}-potent matrix. The Electronic Journal of Linear Algebra, 24. doi:10.13001/1081-3810.1578 es_ES
dc.description.references Lebtahi, L., Romero, O., & Thome, N. (2012). Characterizations of <mml:math altimg=«si1.gif» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:mrow><mml:mo stretchy=«false»>{</mml:mo><mml:mi>K</mml:mi><mml:mtext>,</mml:mtext><mml:mi>s</mml:mi><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=«false»>}</mml:mo></mml:mrow></mml:math>-potent matrices and applications. Linear Algebra and its Applications, 436(2), 293-306. doi:10.1016/j.laa.2010.11.034 es_ES
dc.description.references Lebtahi, L., Stuart, J., Thome, N., & Weaver, J. R. (2013). Matrices A such thatRA=As+1RwhenRk=I. Linear Algebra and its Applications, 439(4), 1017-1023. doi:10.1016/j.laa.2012.10.034 es_ES
dc.description.references Baksalary, O., & Trenkler, G. (2013). On k-potent matrices. The Electronic Journal of Linear Algebra, 26. doi:10.13001/1081-3810.1664 es_ES
dc.description.references Du, H.-K., & Li, Y. (2005). The spectral characterization of generalized projections. Linear Algebra and its Applications, 400, 313-318. doi:10.1016/j.laa.2004.11.027 es_ES
dc.description.references Lebtahi, L., & Thome, N. (2007). A note on k-generalized projections. Linear Algebra and its Applications, 420(2-3), 572-575. doi:10.1016/j.laa.2006.08.011 es_ES
dc.description.references Tosic, M., Cvetkovic-Ilic, D., & Deng, C. (2011). The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors. The Electronic Journal of Linear Algebra, 22. doi:10.13001/1081-3810.1496 es_ES
dc.description.references Bru, R., & Thome, N. (1998). Group inverse and group involutory Matrices∗. Linear and Multilinear Algebra, 45(2-3), 207-218. doi:10.1080/03081089808818587 es_ES
dc.description.references Lebtahi, L., Romero, Ó., & Thome, N. (2013). Algorithms for{K,s+1}-potent matrix constructions. Journal of Computational and Applied Mathematics, 249, 157-162. doi:10.1016/j.cam.2012.01.019 es_ES
dc.description.references Lebtahi, L., Romero, Ó., & Thome, N. (2017). Algorithms for solving the inverse problem associated with KAK=As+1. Journal of Computational and Applied Mathematics, 309, 333-341. doi:10.1016/j.cam.2016.02.055 es_ES
dc.description.references Lebtahi, L., Romero, Ó., & Thome, N. (2014). Generalized centro-invertible matrices with applications. Applied Mathematics Letters, 38, 106-109. doi:10.1016/j.aml.2014.07.008 es_ES
dc.description.references Benítez, J., & Thome, N. (2005). Characterizations and linear combinations of k-generalized projectors. Linear Algebra and its Applications, 410, 150-159. doi:10.1016/j.laa.2005.03.007 es_ES
dc.description.references Tao, D., & Yasuda, M. (2002). A Spectral Characterization of Generalized Real Symmetric Centrosymmetric and Generalized Real Symmetric Skew-Centrosymmetric Matrices. SIAM Journal on Matrix Analysis and Applications, 23(3), 885-895. doi:10.1137/s0895479801386730 es_ES
dc.description.references Yasuda, M. (2012). Some properties of commuting and anti-commuting m-involutions. Acta Mathematica Scientia, 32(2), 631-644. doi:10.1016/s0252-9602(12)60044-7 es_ES
dc.description.references Weaver, J. R. (1985). Centrosymmetric (Cross-Symmetric) Matrices, Their Basic Properties, Eigenvalues, and Eigenvectors. The American Mathematical Monthly, 92(10), 711-717. doi:10.1080/00029890.1985.11971719 es_ES
dc.description.references Guo-Lin Li, & Zheng-He Feng. (2003). Mirror-transformations of matrices and their application on odd/even modal decomposition of mirror-symmetric multiconductor transmission line equations. IEEE Transactions on Advanced Packaging, 26(2), 172-181. doi:10.1109/tadvp.2003.817476 es_ES
dc.description.references Yasuda, M. (2003). Spectral Characterizations for Hermitian Centrosymmetric K-Matrices and Hermitian Skew-Centrosymmetric K-Matrices. SIAM Journal on Matrix Analysis and Applications, 25(3), 601-605. doi:10.1137/s0895479802418835 es_ES
dc.description.references Zhang, F. (1997). Quaternions and matrices of quaternions. Linear Algebra and its Applications, 251, 21-57. doi:10.1016/0024-3795(95)00543-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem