- -

TOPSIS-RTCID for range target-based criteria and interval data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

TOPSIS-RTCID for range target-based criteria and interval data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Jahan, A. es_ES
dc.contributor.author Yazdani, M. es_ES
dc.contributor.author Edwards, K.L. es_ES
dc.date.accessioned 2021-02-17T10:37:32Z
dc.date.available 2021-02-17T10:37:32Z
dc.date.issued 2021-01-29
dc.identifier.uri http://hdl.handle.net/10251/161640
dc.description.abstract [EN] The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is receiving considerable attention as an essential decision analysis technique and becoming a leading method. This paper describes a new version of TOPSIS with interval data and capability to deal with all types of criteria. An improved structure of the TOPSIS is presented to deal with high uncertainty in engineering and engineering decision-making. The proposed Range Target-based Criteria and Interval Data model of TOPSIS (TOPSIS-RTCID) achieves the core contribution in decision making theories through a distinct normalization formula for cost and benefits criteria in scale of point and range target-based values. It is important to notice a very interesting property of the proposed normalization formula being opposite to the usual one. This property can explain why the rank reversal problem is limited. The applicability of the proposed TOPSIS-RTCID method is examined with several empirical litreture’s examples with comparisons, sensitivity analysis, and simulation. The authors have developed a new tool with more efficient, reliable and robust outcomes compared to that from other available tools. The complexity of an engineering design decision problem can be resolved through the development of a well-structured decision making method with multiple attributes. Various decision approches developed for engineering design have neglected elements that should have been taken into account. Through this study, engineering design problems can be resolved with greater reliability and confidence. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof International Journal of Production Management and Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Interval data es_ES
dc.subject Uncertainty in data es_ES
dc.subject Range target-based criteria es_ES
dc.subject Multi-attribute decision making es_ES
dc.title TOPSIS-RTCID for range target-based criteria and interval data es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ijpme.2021.13323
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Jahan, A.; Yazdani, M.; Edwards, K. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering. 9(1):1-14. https://doi.org/10.4995/ijpme.2021.13323 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ijpme.2021.13323 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2340-4876
dc.relation.pasarela OJS\13323 es_ES
dc.description.references Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004 es_ES
dc.description.references Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003 es_ES
dc.description.references Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028 es_ES
dc.description.references Bahraminasab, M., Jahan, A. (2011). Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 32, 4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046 es_ES
dc.description.references Baradaran, V., Azarnia, S. (2013). An Approach to Test Consistency and Generate Weights from Grey Pairwise Matrices in Grey Analytical Hierarchy Process. Journal of Grey System, 25. es_ES
dc.description.references Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056 es_ES
dc.description.references Cables, E., Lamata, M.T., Verdegay, J.L. (2018). FRIM-Fuzzy Reference Ideal Method in Multicriteria Decision Making. In Collan, M. & Kacprzyk, J. (Eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-60207-3_19 es_ES
dc.description.references Çakır, S. (2016). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1189-3 es_ES
dc.description.references Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25, 185-208. https://doi.org/10.15388/Informatica.2014.10 es_ES
dc.description.references Celik, E., Erdogan, M., Gumus, A. (2016). An extended fuzzy TOPSIS-GRA method based on different separation measures for green logistics service provider selection. International Journal of Environmental Science and Technology, 13, 1377-1392. https://doi.org/10.1007/s13762-016-0977-4 es_ES
dc.description.references Dymova, L., Sevastjanov, P., Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems With Applications, 40, 4841-4847. https://doi.org/10.1016/j.eswa.2013.02.022 es_ES
dc.description.references Garca-Cascales, M.S., Lamata, M.T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56, 123-132. https://doi.org/10.1016/j.mcm.2011.12.022 es_ES
dc.description.references Hafezalkotob, A., Hafezalkotob, A. (2015). Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87, 949-959. https://doi.org/10.1016/j.matdes.2015.08.087 es_ES
dc.description.references Hafezalkotob, A., Hafezalkotob, A. (2016). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Industrial Engineering International, 13, 181-198. https://doi.org/10.1007/s40092-016-0176-4 es_ES
dc.description.references Hafezalkotob, A., Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196. https://doi.org/10.1016/j.engappai.2016.10.018 es_ES
dc.description.references Hafezalkotob, A., Hafezalkotob, A., Sayadi, M.K. (2016). Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling, 40, 1372-1386. https://doi.org/10.1016/j.apm.2015.07.019 es_ES
dc.description.references Hajiagha, S.H.R., Hashemi, S.S., Zavadskas, E.K., Akrami, H. (2012). Extensions of LINMAP model for multi criteria decision making with grey numbers. Technological and Economic Development of Economy, 18, 636-650. https://doi.org/10.3846/20294913.2012.740518 es_ES
dc.description.references Hazelrigg, G.A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization, 35, 103-120. https://doi.org/10.1080/0305215031000097059 es_ES
dc.description.references Hu, J., Du, Y., Mo, H., Wei, D., Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85. https://doi.org/10.1016/j.physa.2015.09.028 es_ES
dc.description.references Huang, Y., Jiang, W. (2018). Extension of TOPSIS Method and its Application in Investment. Arabian Journal for Science and Engineering, 43, 693-705. https://doi.org/10.1007/s13369-017-2736-3 es_ES
dc.description.references Jahan, A. (2018). Developing WASPAS-RTB method for range target-based criteria: toward selection for robust design. Technological and Economic Development of Economy, 24, 1362-1387. https://doi.org/10.3846/20294913.2017.1295288 es_ES
dc.description.references Jahan, A., Bahraminasab, M., Edwards, K.L. (2012). A target-based normalization technique for materials selection. Materials & Design, 35, 647-654. https://doi.org/10.1016/j.matdes.2011.09.005 es_ES
dc.description.references Jahan, A., Edwards, K.L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. https://doi.org/10.1016/j.matdes.2012.12.072 es_ES
dc.description.references Jahan, A., Edwards, K.L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022 es_ES
dc.description.references Jahan, A., Edwards, K.L., Bahraminasab, M. (2016). Multi-criteria decision analysis for supporting the selection of engineering materials in product design, Oxford, Butterworth-Heinemann. es_ES
dc.description.references Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M. (2011). A comprehensive VIKOR method for material selection. Materials & Design, 32, 1215-1221. https://doi.org/10.1016/j.matdes.2010.10.015 es_ES
dc.description.references Jahan, A., Zavadskas, E.K. (2018). ELECTRE-IDAT for design decision-making problems with interval data and target-based criteria. Soft Computing, 23, 129-143. https://doi.org/10.1007/s00500-018-3501-6 es_ES
dc.description.references Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Davoodi, A.R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49, 1137-1142. https://doi.org/10.1016/j.mcm.2008.07.009 es_ES
dc.description.references Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375-1384. https://doi.org/10.1016/j.amc.2005.08.048 es_ES
dc.description.references Kasirian, M., Yusuff, R. (2013). An integration of a hybrid modified TOPSIS with a PGP model for the supplier selection with interdependent criteria. International Journal of Production Research, 51, 1037-1054. https://doi.org/10.1080/00207543.2012.663107 es_ES
dc.description.references Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152-160. https://doi.org/10.1016/j.ejor.2016.11.052 es_ES
dc.description.references Liang, D., Xu, Z. (2017). The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 60, 167-179. https://doi.org/10.1016/j.asoc.2017.06.034 es_ES
dc.description.references Liao, H., Wu, X. (2019). DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega, 94. 102058. https://doi.org/10.1016/j.omega.2019.04.001 es_ES
dc.description.references Liu, H.C., You, J.X., Zhen, L., Fan, X.J. (2014). A novel hybrid multiple criteria decision making model for material selection with targetbased criteria. Materials & Design, 60, 380-390. https://doi.org/10.1016/j.matdes.2014.03.071 es_ES
dc.description.references Maghsoodi, A.I., Maghsoodi, A.I., Poursoltan, P., Antucheviciene, J., Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19, 1194-1210. https://doi.org/10.1016/j.acme.2019.06.010 es_ES
dc.description.references Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312-318. https://doi.org/10.1007/s00158-004-0473-1 es_ES
dc.description.references Peldschus, F. (2009). The analysis of the quality of the results obtained with the methods of multi-criteria decisions. Technological and Economic Development of Economy, 15, 580-592. https://doi.org/10.3846/1392-8619.2009.15.580-592 es_ES
dc.description.references Peldschus, F. (2018). Recent findings from numerical analysis in multi-criteria decision making. Technological and Economic Development of Economy, 24, 1695-1717. https://doi.org/10.3846/20294913.2017.1356761 es_ES
dc.description.references Perez, E.C., Lamata, M., Verdegay, J. (2016). RIM-Reference Ideal Method in Multicriteria Decision Making. Information Sciences, 337- 338, 1-10. https://doi.org/10.1016/j.ins.2015.12.011 es_ES
dc.description.references Sayadi, M.K., Heydari, M., Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33, 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002 es_ES
dc.description.references Sen, P., Yang, J.B. (1998). MCDM and the Nature of Decision Making in Design, Springer. https://doi.org/10.1007/978-1-4471-3020-8_2 es_ES
dc.description.references Sevastianov, P. (2007). Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster- Shafer theory. Information Sciences, 177, 4645-4661. https://doi.org/10.1016/j.ins.2007.05.001 es_ES
dc.description.references Shanian, A., Savadogo, O. (2009). A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Systems With Applications, 36, 1362-1370. https://doi.org/10.1016/j.eswa.2007.11.052 es_ES
dc.description.references Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D. (2018). An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 428, 105-119. https://doi.org/10.1016/j.ins.2017.10.045 es_ES
dc.description.references Shishank, S., Dekkers, R. (2013). Outsourcing: decision-making methods and criteria during design and engineering. Production Planning & Control, 24, 318-336. https://doi.org/10.1080/09537287.2011.648544 es_ES
dc.description.references Shouzhen, Z., Yao, X. (2018). A method based on TOPSIS and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472 es_ES
dc.description.references Stanujkic, D., Magdalinovic, N., Jovanovic, R., Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18, 331-363. https://doi.org/10.3846/20294913.2012.676996 es_ES
dc.description.references Suder, A., Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24, 844-858. https://doi.org/10.3846/20294913.2016.1216905 es_ES
dc.description.references Tilstra, A.H., Backlund, P.B., Seepersad, C.C., Wood, K.L. (2015). Principles for designing products with flexibility for future evolution. International Journal of Mass Customisation, 5, 22-54. https://doi.org/10.1504/IJMASSC.2015.069597 es_ES
dc.description.references Tsaur, R.C. (2011) Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218, 4295-4304. https://doi.org/10.1016/j.amc.2011.10.001 es_ES
dc.description.references Turskis, Z., Zavadskas, E.K. (2010) A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21, 597-610. https://doi.org/10.15388/Informatica.2010.307 es_ES
dc.description.references Wang, Y.M., Luo, Y. (2009) On rank reversal in decision analysis. Mathematical and Computer Modelling, 49, 1221-1229. https://doi.org/10.1016/j.mcm.2008.06.019 es_ES
dc.description.references Ye, J. (2015) An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems, 28, 247-255. https://doi.org/10.3233/IFS-141295 es_ES
dc.description.references Yue, Z. (2013) Group decision making with multi-attribute interval data. Information Fusion, 14, 551-561. https://doi.org/10.1016/j.inffus.2013.01.003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem