- -

TOPSIS-RTCID for range target-based criteria and interval data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

TOPSIS-RTCID for range target-based criteria and interval data

Mostrar el registro completo del ítem

Jahan, A.; Yazdani, M.; Edwards, K. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering. 9(1):1-14. https://doi.org/10.4995/ijpme.2021.13323

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161640

Ficheros en el ítem

Metadatos del ítem

Título: TOPSIS-RTCID for range target-based criteria and interval data
Autor: Jahan, A. Yazdani, M. Edwards, K.L.
Fecha difusión:
Resumen:
[EN] The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is receiving considerable attention as an essential decision analysis technique and becoming a leading method. This paper describes a new ...[+]
Palabras clave: Interval data , Uncertainty in data , Range target-based criteria , Multi-attribute decision making
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
International Journal of Production Management and Engineering. (eissn: 2340-4876 )
DOI: 10.4995/ijpme.2021.13323
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ijpme.2021.13323
Tipo: Artículo

References

Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004

Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003

Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028 [+]
Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004

Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003

Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028

Bahraminasab, M., Jahan, A. (2011). Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 32, 4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046

Baradaran, V., Azarnia, S. (2013). An Approach to Test Consistency and Generate Weights from Grey Pairwise Matrices in Grey Analytical Hierarchy Process. Journal of Grey System, 25.

Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056

Cables, E., Lamata, M.T., Verdegay, J.L. (2018). FRIM-Fuzzy Reference Ideal Method in Multicriteria Decision Making. In Collan, M. & Kacprzyk, J. (Eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-60207-3_19

Çakır, S. (2016). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1189-3

Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25, 185-208. https://doi.org/10.15388/Informatica.2014.10

Celik, E., Erdogan, M., Gumus, A. (2016). An extended fuzzy TOPSIS-GRA method based on different separation measures for green logistics service provider selection. International Journal of Environmental Science and Technology, 13, 1377-1392. https://doi.org/10.1007/s13762-016-0977-4

Dymova, L., Sevastjanov, P., Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems With Applications, 40, 4841-4847. https://doi.org/10.1016/j.eswa.2013.02.022

Garca-Cascales, M.S., Lamata, M.T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56, 123-132. https://doi.org/10.1016/j.mcm.2011.12.022

Hafezalkotob, A., Hafezalkotob, A. (2015). Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87, 949-959. https://doi.org/10.1016/j.matdes.2015.08.087

Hafezalkotob, A., Hafezalkotob, A. (2016). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Industrial Engineering International, 13, 181-198. https://doi.org/10.1007/s40092-016-0176-4

Hafezalkotob, A., Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196. https://doi.org/10.1016/j.engappai.2016.10.018

Hafezalkotob, A., Hafezalkotob, A., Sayadi, M.K. (2016). Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling, 40, 1372-1386. https://doi.org/10.1016/j.apm.2015.07.019

Hajiagha, S.H.R., Hashemi, S.S., Zavadskas, E.K., Akrami, H. (2012). Extensions of LINMAP model for multi criteria decision making with grey numbers. Technological and Economic Development of Economy, 18, 636-650. https://doi.org/10.3846/20294913.2012.740518

Hazelrigg, G.A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization, 35, 103-120. https://doi.org/10.1080/0305215031000097059

Hu, J., Du, Y., Mo, H., Wei, D., Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85. https://doi.org/10.1016/j.physa.2015.09.028

Huang, Y., Jiang, W. (2018). Extension of TOPSIS Method and its Application in Investment. Arabian Journal for Science and Engineering, 43, 693-705. https://doi.org/10.1007/s13369-017-2736-3

Jahan, A. (2018). Developing WASPAS-RTB method for range target-based criteria: toward selection for robust design. Technological and Economic Development of Economy, 24, 1362-1387. https://doi.org/10.3846/20294913.2017.1295288

Jahan, A., Bahraminasab, M., Edwards, K.L. (2012). A target-based normalization technique for materials selection. Materials & Design, 35, 647-654. https://doi.org/10.1016/j.matdes.2011.09.005

Jahan, A., Edwards, K.L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. https://doi.org/10.1016/j.matdes.2012.12.072

Jahan, A., Edwards, K.L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022

Jahan, A., Edwards, K.L., Bahraminasab, M. (2016). Multi-criteria decision analysis for supporting the selection of engineering materials in product design, Oxford, Butterworth-Heinemann.

Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M. (2011). A comprehensive VIKOR method for material selection. Materials & Design, 32, 1215-1221. https://doi.org/10.1016/j.matdes.2010.10.015

Jahan, A., Zavadskas, E.K. (2018). ELECTRE-IDAT for design decision-making problems with interval data and target-based criteria. Soft Computing, 23, 129-143. https://doi.org/10.1007/s00500-018-3501-6

Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Davoodi, A.R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49, 1137-1142. https://doi.org/10.1016/j.mcm.2008.07.009

Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375-1384. https://doi.org/10.1016/j.amc.2005.08.048

Kasirian, M., Yusuff, R. (2013). An integration of a hybrid modified TOPSIS with a PGP model for the supplier selection with interdependent criteria. International Journal of Production Research, 51, 1037-1054. https://doi.org/10.1080/00207543.2012.663107

Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152-160. https://doi.org/10.1016/j.ejor.2016.11.052

Liang, D., Xu, Z. (2017). The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 60, 167-179. https://doi.org/10.1016/j.asoc.2017.06.034

Liao, H., Wu, X. (2019). DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega, 94. 102058. https://doi.org/10.1016/j.omega.2019.04.001

Liu, H.C., You, J.X., Zhen, L., Fan, X.J. (2014). A novel hybrid multiple criteria decision making model for material selection with targetbased criteria. Materials & Design, 60, 380-390. https://doi.org/10.1016/j.matdes.2014.03.071

Maghsoodi, A.I., Maghsoodi, A.I., Poursoltan, P., Antucheviciene, J., Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19, 1194-1210. https://doi.org/10.1016/j.acme.2019.06.010

Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312-318. https://doi.org/10.1007/s00158-004-0473-1

Peldschus, F. (2009). The analysis of the quality of the results obtained with the methods of multi-criteria decisions. Technological and Economic Development of Economy, 15, 580-592. https://doi.org/10.3846/1392-8619.2009.15.580-592

Peldschus, F. (2018). Recent findings from numerical analysis in multi-criteria decision making. Technological and Economic Development of Economy, 24, 1695-1717. https://doi.org/10.3846/20294913.2017.1356761

Perez, E.C., Lamata, M., Verdegay, J. (2016). RIM-Reference Ideal Method in Multicriteria Decision Making. Information Sciences, 337- 338, 1-10. https://doi.org/10.1016/j.ins.2015.12.011

Sayadi, M.K., Heydari, M., Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33, 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002

Sen, P., Yang, J.B. (1998). MCDM and the Nature of Decision Making in Design, Springer. https://doi.org/10.1007/978-1-4471-3020-8_2

Sevastianov, P. (2007). Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster- Shafer theory. Information Sciences, 177, 4645-4661. https://doi.org/10.1016/j.ins.2007.05.001

Shanian, A., Savadogo, O. (2009). A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Systems With Applications, 36, 1362-1370. https://doi.org/10.1016/j.eswa.2007.11.052

Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D. (2018). An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 428, 105-119. https://doi.org/10.1016/j.ins.2017.10.045

Shishank, S., Dekkers, R. (2013). Outsourcing: decision-making methods and criteria during design and engineering. Production Planning & Control, 24, 318-336. https://doi.org/10.1080/09537287.2011.648544

Shouzhen, Z., Yao, X. (2018). A method based on TOPSIS and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472

Stanujkic, D., Magdalinovic, N., Jovanovic, R., Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18, 331-363. https://doi.org/10.3846/20294913.2012.676996

Suder, A., Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24, 844-858. https://doi.org/10.3846/20294913.2016.1216905

Tilstra, A.H., Backlund, P.B., Seepersad, C.C., Wood, K.L. (2015). Principles for designing products with flexibility for future evolution. International Journal of Mass Customisation, 5, 22-54. https://doi.org/10.1504/IJMASSC.2015.069597

Tsaur, R.C. (2011) Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218, 4295-4304. https://doi.org/10.1016/j.amc.2011.10.001

Turskis, Z., Zavadskas, E.K. (2010) A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21, 597-610. https://doi.org/10.15388/Informatica.2010.307

Wang, Y.M., Luo, Y. (2009) On rank reversal in decision analysis. Mathematical and Computer Modelling, 49, 1221-1229. https://doi.org/10.1016/j.mcm.2008.06.019

Ye, J. (2015) An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems, 28, 247-255. https://doi.org/10.3233/IFS-141295

Yue, Z. (2013) Group decision making with multi-attribute interval data. Information Fusion, 14, 551-561. https://doi.org/10.1016/j.inffus.2013.01.003

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem