- -

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

Show full item record

Giménez, JB.; Martí, N.; Bouzas, A.; Ferrer, J.; Seco, A. (2020). A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization. Journal of Environmental Management. 271:1-8. https://doi.org/10.1016/j.jenvman.2020.110983

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161694

Files in this item

Item Metadata

Title: A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization
Author: Giménez, Juan B. Martí, Nuria Bouzas, Alberto FERRER, J. Seco, Aurora
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Issued date:
Embargo end date: 2022-10-01
Abstract:
[EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane ...[+]
Subjects: Particulates hydrolysis , Mathematical modelling , Solubilization constant , Solids prediction , AnMBR
Copyrigths: Embargado
Source:
Journal of Environmental Management. (issn: 0301-4797 )
DOI: 10.1016/j.jenvman.2020.110983
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jenvman.2020.110983
Project ID:
info:eu-repo/grantAgreement/GVA//ACOMP%2F2009%2F285/
info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-01/ES/ESTUDIO EN PLANTA PILOTO DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. EVALUACION/ /
info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-02/ES/MODELACION DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. DESARROLLO DE LOS ALGORIT/
Thanks:
This research work was supported by the Spanish Research Foundation (CICYT) under Grants CTM 2008-06809-C02-01 and CTM 2008-06809-C02-02); Comunitat Valenciana Regional Government under Grant GVACOMP 2009-285.
Type: Artículo

References

Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4

Durán, F., Zamorano-López, N., Barat, R., Ferrer, J., & Aguado, D. (2018). Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics. Process Biochemistry, 67, 139-146. doi:10.1016/j.procbio.2018.02.010

Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Research, 37(19), 4561-4572. doi:10.1016/s0043-1354(03)00401-9 [+]
Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4

Durán, F., Zamorano-López, N., Barat, R., Ferrer, J., & Aguado, D. (2018). Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics. Process Biochemistry, 67, 139-146. doi:10.1016/j.procbio.2018.02.010

Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Research, 37(19), 4561-4572. doi:10.1016/s0043-1354(03)00401-9

Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019

Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069

Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014

Kleerebezem, R., & van Loosdrecht, M. C. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207-212. doi:10.1016/j.copbio.2007.05.001

Larsen*, T. A., Alder, A. C., Eggen, R. I. L., Maurer, M., & Lienert, J. (2009). Source Separation: Will We See a Paradigm Shift in Wastewater Handling? Environmental Science & Technology, 43(16), 6121-6125. doi:10.1021/es803001r

Lettinga, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology, 19(9), 363-370. doi:10.1016/s0167-7799(01)01701-2

Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012

Ludwig, T., Gaida, D., Keysers, C., Pinnekamp, J., Bongards, M., Kern, P., … Sousa Brito, A. L. (2012). An advanced simulation model for membrane bioreactors: development, calibration and validation. Water Science and Technology, 66(7), 1384-1391. doi:10.2166/wst.2012.249

Miron, Y. (2000). The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 34(5), 1705-1713. doi:10.1016/s0043-1354(99)00280-8

Moñino, P., Jiménez, E., Barat, R., Aguado, D., Seco, A., & Ferrer, J. (2016). Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Management, 56, 158-165. doi:10.1016/j.wasman.2016.07.021

Nabi, M., Zhang, G., Li, F., Zhang, P., Wu, Y., Tao, X., … Dai, J. (2020). Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: a review. DESALINATION AND WATER TREATMENT, 175, 341-351. doi:10.5004/dwt.2020.24670

Nabi, M., Zhang, G., Zhang, P., Tao, X., Wang, S., Ye, J., … Wu, Y. (2019). Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production. Bioresource Technology, 286, 121378. doi:10.1016/j.biortech.2019.121378

Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5-6), 411-490. doi:10.1080/10643389109388424

Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049

Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021

Sarioglu, M., Insel, G., & Orhon, D. (2012). Dynamic in-series resistance modeling and analysis of a submerged membrane bioreactor using a novel filtration mode. Desalination, 285, 285-294. doi:10.1016/j.desal.2011.10.015

Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055

Veeken, A., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69(3), 249-254. doi:10.1016/s0960-8524(98)00188-6

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record