- -

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giménez, Juan B. es_ES
dc.contributor.author Martí, Nuria es_ES
dc.contributor.author Bouzas, Alberto es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Seco, Aurora es_ES
dc.date.accessioned 2021-02-18T04:31:46Z
dc.date.available 2021-02-18T04:31:46Z
dc.date.issued 2020-10-01 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161694
dc.description.abstract [EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent characteristics is developed. The solubilization of organic particulates was clearly influenced by temperature and the SRT, whereas the hydraulic retention time influence was negligible. Furthermore, the activation energy value of about 20 kJ mol(-1) confirms the idea that diffusion of hydrolytic enzymes from the bulk solution to the particle surface is the rate-limiting step of hydrolysis. es_ES
dc.description.sponsorship This research work was supported by the Spanish Research Foundation (CICYT) under Grants CTM 2008-06809-C02-01 and CTM 2008-06809-C02-02); Comunitat Valenciana Regional Government under Grant GVACOMP 2009-285. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Particulates hydrolysis es_ES
dc.subject Mathematical modelling es_ES
dc.subject Solubilization constant es_ES
dc.subject Solids prediction es_ES
dc.subject AnMBR es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.110983 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2009%2F285/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-01/ES/ESTUDIO EN PLANTA PILOTO DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. EVALUACION/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-02/ES/MODELACION DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. DESARROLLO DE LOS ALGORIT/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.description.bibliographicCitation Giménez, JB.; Martí, N.; Bouzas, A.; Ferrer, J.; Seco, A. (2020). A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization. Journal of Environmental Management. 271:1-8. https://doi.org/10.1016/j.jenvman.2020.110983 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.110983 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 271 es_ES
dc.identifier.pmid 32579530 es_ES
dc.relation.pasarela S\421414 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4 es_ES
dc.description.references Durán, F., Zamorano-López, N., Barat, R., Ferrer, J., & Aguado, D. (2018). Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics. Process Biochemistry, 67, 139-146. doi:10.1016/j.procbio.2018.02.010 es_ES
dc.description.references Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Research, 37(19), 4561-4572. doi:10.1016/s0043-1354(03)00401-9 es_ES
dc.description.references Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 es_ES
dc.description.references Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 es_ES
dc.description.references Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 es_ES
dc.description.references Kleerebezem, R., & van Loosdrecht, M. C. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207-212. doi:10.1016/j.copbio.2007.05.001 es_ES
dc.description.references Larsen*, T. A., Alder, A. C., Eggen, R. I. L., Maurer, M., & Lienert, J. (2009). Source Separation: Will We See a Paradigm Shift in Wastewater Handling? Environmental Science & Technology, 43(16), 6121-6125. doi:10.1021/es803001r es_ES
dc.description.references Lettinga, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology, 19(9), 363-370. doi:10.1016/s0167-7799(01)01701-2 es_ES
dc.description.references Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012 es_ES
dc.description.references Ludwig, T., Gaida, D., Keysers, C., Pinnekamp, J., Bongards, M., Kern, P., … Sousa Brito, A. L. (2012). An advanced simulation model for membrane bioreactors: development, calibration and validation. Water Science and Technology, 66(7), 1384-1391. doi:10.2166/wst.2012.249 es_ES
dc.description.references Miron, Y. (2000). The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 34(5), 1705-1713. doi:10.1016/s0043-1354(99)00280-8 es_ES
dc.description.references Moñino, P., Jiménez, E., Barat, R., Aguado, D., Seco, A., & Ferrer, J. (2016). Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Management, 56, 158-165. doi:10.1016/j.wasman.2016.07.021 es_ES
dc.description.references Nabi, M., Zhang, G., Li, F., Zhang, P., Wu, Y., Tao, X., … Dai, J. (2020). Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: a review. DESALINATION AND WATER TREATMENT, 175, 341-351. doi:10.5004/dwt.2020.24670 es_ES
dc.description.references Nabi, M., Zhang, G., Zhang, P., Tao, X., Wang, S., Ye, J., … Wu, Y. (2019). Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production. Bioresource Technology, 286, 121378. doi:10.1016/j.biortech.2019.121378 es_ES
dc.description.references Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5-6), 411-490. doi:10.1080/10643389109388424 es_ES
dc.description.references Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 es_ES
dc.description.references Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021 es_ES
dc.description.references Sarioglu, M., Insel, G., & Orhon, D. (2012). Dynamic in-series resistance modeling and analysis of a submerged membrane bioreactor using a novel filtration mode. Desalination, 285, 285-294. doi:10.1016/j.desal.2011.10.015 es_ES
dc.description.references Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 es_ES
dc.description.references Veeken, A., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69(3), 249-254. doi:10.1016/s0960-8524(98)00188-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem