Mostrar el registro sencillo del ítem
dc.contributor.author | Giménez, Juan B.![]() |
es_ES |
dc.contributor.author | Martí, Nuria![]() |
es_ES |
dc.contributor.author | Bouzas, Alberto![]() |
es_ES |
dc.contributor.author | FERRER, J.![]() |
es_ES |
dc.contributor.author | Seco, Aurora![]() |
es_ES |
dc.date.accessioned | 2021-02-18T04:31:46Z | |
dc.date.available | 2021-02-18T04:31:46Z | |
dc.date.issued | 2020-10-01 | es_ES |
dc.identifier.issn | 0301-4797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161694 | |
dc.description.abstract | [EN] Anaerobic Membrane Bioreactors (AnMBR) are gaining attention as a suitable approach for sustainable low-strength wastewater treatment, as they bring together the advantages of both anaerobic treatments and membrane bioreactors. However, increasing the sludge retention time (SRT) necessary to favor hydrolysis increases the suspended solids concentration potentially leading to decreased permeate flux. Therefore, the availability of a mathematical approach to predict the solids concentration within an AnMBR can be very useful. In this work, a mathematical model describing the volatile solids concentration within the reactor as a function of the operating parameters and the influent characteristics is developed. The solubilization of organic particulates was clearly influenced by temperature and the SRT, whereas the hydraulic retention time influence was negligible. Furthermore, the activation energy value of about 20 kJ mol(-1) confirms the idea that diffusion of hydrolytic enzymes from the bulk solution to the particle surface is the rate-limiting step of hydrolysis. | es_ES |
dc.description.sponsorship | This research work was supported by the Spanish Research Foundation (CICYT) under Grants CTM 2008-06809-C02-01 and CTM 2008-06809-C02-02); Comunitat Valenciana Regional Government under Grant GVACOMP 2009-285. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Particulates hydrolysis | es_ES |
dc.subject | Mathematical modelling | es_ES |
dc.subject | Solubilization constant | es_ES |
dc.subject | Solids prediction | es_ES |
dc.subject | AnMBR | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jenvman.2020.110983 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2009%2F285/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-01/ES/ESTUDIO EN PLANTA PILOTO DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. EVALUACION/ / | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CTM2008-06809-C02-02/ES/MODELACION DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA LA VALORIZACION ENERGETICA DE LA MATERIA ORGANICA DEL AGUA RESIDUAL Y LA MINIMIZACION DE LOS FANGOS PRODUCIDOS. DESARROLLO DE LOS ALGORIT/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Giménez, JB.; Martí, N.; Bouzas, A.; Ferrer, J.; Seco, A. (2020). A mathematical approach to predict the solids concentration in anaerobic membrane bioreactos (AnMBR): Evaluation of the volatile solids solubilization. Journal of Environmental Management. 271:1-8. https://doi.org/10.1016/j.jenvman.2020.110983 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jenvman.2020.110983 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 8 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 271 | es_ES |
dc.identifier.pmid | 32579530 | es_ES |
dc.relation.pasarela | S\421414 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Batstone, D. J., Puyol, D., Flores-Alsina, X., & Rodríguez, J. (2015). Mathematical modelling of anaerobic digestion processes: applications and future needs. Reviews in Environmental Science and Bio/Technology, 14(4), 595-613. doi:10.1007/s11157-015-9376-4 | es_ES |
dc.description.references | Durán, F., Zamorano-López, N., Barat, R., Ferrer, J., & Aguado, D. (2018). Understanding the performance of an AnMBR treating urban wastewater and food waste via model simulation and characterization of the microbial population dynamics. Process Biochemistry, 67, 139-146. doi:10.1016/j.procbio.2018.02.010 | es_ES |
dc.description.references | Gavala, H. N., Yenal, U., Skiadas, I. V., Westermann, P., & Ahring, B. K. (2003). Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Research, 37(19), 4561-4572. doi:10.1016/s0043-1354(03)00401-9 | es_ES |
dc.description.references | Giménez, J. B., Martí, N., Ferrer, J., & Seco, A. (2012). Methane recovery efficiency in a submerged anaerobic membrane bioreactor (SAnMBR) treating sulphate-rich urban wastewater: Evaluation of methane losses with the effluent. Bioresource Technology, 118, 67-72. doi:10.1016/j.biortech.2012.05.019 | es_ES |
dc.description.references | Giménez, J. B., Martí, N., Robles, A., Ferrer, J., & Seco, A. (2014). Anaerobic treatment of urban wastewater in membrane bioreactors: evaluation of seasonal temperature variations. Water Science and Technology, 69(7), 1581-1588. doi:10.2166/wst.2014.069 | es_ES |
dc.description.references | Giménez, J. B., Robles, A., Carretero, L., Durán, F., Ruano, M. V., Gatti, M. N., … Seco, A. (2011). Experimental study of the anaerobic urban wastewater treatment in a submerged hollow-fibre membrane bioreactor at pilot scale. Bioresource Technology, 102(19), 8799-8806. doi:10.1016/j.biortech.2011.07.014 | es_ES |
dc.description.references | Kleerebezem, R., & van Loosdrecht, M. C. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18(3), 207-212. doi:10.1016/j.copbio.2007.05.001 | es_ES |
dc.description.references | Larsen*, T. A., Alder, A. C., Eggen, R. I. L., Maurer, M., & Lienert, J. (2009). Source Separation: Will We See a Paradigm Shift in Wastewater Handling? Environmental Science & Technology, 43(16), 6121-6125. doi:10.1021/es803001r | es_ES |
dc.description.references | Lettinga, G. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology, 19(9), 363-370. doi:10.1016/s0167-7799(01)01701-2 | es_ES |
dc.description.references | Li, W.-W., & Yu, H.-Q. (2011). From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: A future paradigm. Biotechnology Advances, 29(6), 972-982. doi:10.1016/j.biotechadv.2011.08.012 | es_ES |
dc.description.references | Ludwig, T., Gaida, D., Keysers, C., Pinnekamp, J., Bongards, M., Kern, P., … Sousa Brito, A. L. (2012). An advanced simulation model for membrane bioreactors: development, calibration and validation. Water Science and Technology, 66(7), 1384-1391. doi:10.2166/wst.2012.249 | es_ES |
dc.description.references | Miron, Y. (2000). The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 34(5), 1705-1713. doi:10.1016/s0043-1354(99)00280-8 | es_ES |
dc.description.references | Moñino, P., Jiménez, E., Barat, R., Aguado, D., Seco, A., & Ferrer, J. (2016). Potential use of the organic fraction of municipal solid waste in anaerobic co-digestion with wastewater in submerged anaerobic membrane technology. Waste Management, 56, 158-165. doi:10.1016/j.wasman.2016.07.021 | es_ES |
dc.description.references | Nabi, M., Zhang, G., Li, F., Zhang, P., Wu, Y., Tao, X., … Dai, J. (2020). Enhancement of high pressure homogenization pretreatment on biogas production from sewage sludge: a review. DESALINATION AND WATER TREATMENT, 175, 341-351. doi:10.5004/dwt.2020.24670 | es_ES |
dc.description.references | Nabi, M., Zhang, G., Zhang, P., Tao, X., Wang, S., Ye, J., … Wu, Y. (2019). Contribution of solid and liquid fractions of sewage sludge pretreated by high pressure homogenization to biogas production. Bioresource Technology, 286, 121378. doi:10.1016/j.biortech.2019.121378 | es_ES |
dc.description.references | Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5-6), 411-490. doi:10.1080/10643389109388424 | es_ES |
dc.description.references | Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049 | es_ES |
dc.description.references | Robles, A., Ruano, M. V., Ribes, J., Seco, A., & Ferrer, J. (2013). A filtration model applied to submerged anaerobic MBRs (SAnMBRs). Journal of Membrane Science, 444, 139-147. doi:10.1016/j.memsci.2013.05.021 | es_ES |
dc.description.references | Sarioglu, M., Insel, G., & Orhon, D. (2012). Dynamic in-series resistance modeling and analysis of a submerged membrane bioreactor using a novel filtration mode. Desalination, 285, 285-294. doi:10.1016/j.desal.2011.10.015 | es_ES |
dc.description.references | Smith, A. L., Stadler, L. B., Love, N. G., Skerlos, S. J., & Raskin, L. (2012). Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresource Technology, 122, 149-159. doi:10.1016/j.biortech.2012.04.055 | es_ES |
dc.description.references | Veeken, A., & Hamelers, B. (1999). Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology, 69(3), 249-254. doi:10.1016/s0960-8524(98)00188-6 | es_ES |