- -

Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calvo-Lerma, Joaquim es_ES
dc.contributor.author Asensio-Grau, Andrea es_ES
dc.contributor.author Heredia Gutiérrez, Ana Belén es_ES
dc.contributor.author Andrés Grau, Ana María es_ES
dc.date.accessioned 2021-02-18T04:31:56Z
dc.date.available 2021-02-18T04:31:56Z
dc.date.issued 2020-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161695
dc.description.abstract [EN] The scarce literature about the effect of meal-factors have on lipids digestibility encouraged the present study, in which olive oil was co-digested with naturally fat-free matrices that were rich in carbohydrate (potato and bread) or protein (degreased fresh cheese, hake and turkey) in single, binary and ternary combinations. Digestion was simulated in vitro, and the effect of co-digestion on the release of free fatty acid (FFA) from oil lipolysis were measured by gas chromatography-mass spectrometry. Regarding total FFA release, higher values were found in carbohydrate-rich systems, especially in potato, than in those with protein matrices. Thus, when co-digesting a carbohydrate matrix in addition to one or two protein matrices, lipolysis was reduced. This finding was explained by the carbohydrate and protein ratio of the resulting combinations, as the release of FFA increased with the carbohydrate/protein ratio (R-2 = 0.87, p < 0.001 in potato; R-2 = 0.81, p = 0.04 in bread systems). This study supposes the first approach towards characterisation of lipid digestion regarding food matrix nutritional composition. es_ES
dc.description.sponsorship Authors of this paper acknowledge the European Union and the Horizon 2020 Research and Innovation Framework Programme (PHC-26-2014 call Self-management of health and disease: citizen engagement and mHealth) for fully funding this research under grant agreement number 643806. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof LWT - Food Science & Technology (Online) es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject In vitro digestion es_ES
dc.subject Food matrix es_ES
dc.subject Lipolysis es_ES
dc.subject Free fatty acids es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.lwt.2019.108792 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/643806/EU/Innovative approach for self-management and social welfare of Cystic Fibrosis patients in Europe: development, validation and implementation of a telematics tool./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC//PHC-26-2014 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Calvo-Lerma, J.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions. LWT - Food Science & Technology (Online). 118:1-6. https://doi.org/10.1016/j.lwt.2019.108792 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.lwt.2019.108792 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 6 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 118 es_ES
dc.identifier.eissn 1096-1127 es_ES
dc.relation.pasarela S\396948 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 es_ES
dc.description.references Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278 es_ES
dc.description.references Bedford, M. R., & Classen, H. L. (1992). Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. The Journal of Nutrition, 122(3), 560-569. doi:10.1093/jn/122.3.560 es_ES
dc.description.references Bellesi, F. A., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2014). Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115-122. doi:10.1016/j.foodhyd.2013.09.010 es_ES
dc.description.references Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F., & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 454-462. doi:10.1016/j.foodchem.2016.07.162 es_ES
dc.description.references Brockerhoff, H., & Yurkowski, M. (1966). Stereospecific analyses of several vegetable fats. Journal of Lipid Research, 7(1), 62-64. doi:10.1016/s0022-2275(20)39585-7 es_ES
dc.description.references Calvo-Lerma, J., Fornés-Ferrer, V., Peinado, I., Heredia, A., Ribes-Koninckx, C., & Andrés, A. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLOS ONE, 14(2), e0212459. doi:10.1371/journal.pone.0212459 es_ES
dc.description.references Capuano, E., Oliviero, T., Fogliano, V., & Pellegrini, N. (2018). Role of the food matrix and digestion on calculation of the actual energy content of food. Nutrition Reviews, 76(4), 274-289. doi:10.1093/nutrit/nux072 es_ES
dc.description.references Carrière, F., Renou, C., Lopez, V., de Caro, J., Ferrato, F., Lengsfeld, H., … Verger, R. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949-960. doi:10.1053/gast.2000.18140 es_ES
dc.description.references De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., … Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ, h3978. doi:10.1136/bmj.h3978 es_ES
dc.description.references Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1 es_ES
dc.description.references Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101. doi:10.1016/j.cocis.2009.11.006 es_ES
dc.description.references Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001 es_ES
dc.description.references Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830 es_ES
dc.description.references Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0 es_ES
dc.description.references Jenkins, D. J., Thorne, M. J., Wolever, T. M., Jenkins, A. L., Rao, A. V., & Thompson, L. U. (1987). The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. The American Journal of Clinical Nutrition, 45(5), 946-951. doi:10.1093/ajcn/45.5.946 es_ES
dc.description.references Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210-1222. doi:10.1016/j.lwt.2007.07.020 es_ES
dc.description.references Kristensen, M., & Jensen, M. G. (2011). Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite, 56(1), 65-70. doi:10.1016/j.appet.2010.11.147 es_ES
dc.description.references Li, Y., & McClements, D. J. (2010). New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092. doi:10.1021/jf101325m es_ES
dc.description.references Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j es_ES
dc.description.references Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry, 187, 499-506. doi:10.1016/j.foodchem.2015.04.065 es_ES
dc.description.references Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 es_ES
dc.description.references Pilosof, A. M. R. (2017). Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocolloids, 68, 178-185. doi:10.1016/j.foodhyd.2016.08.030 es_ES
dc.description.references Sasaki, T., & Kohyama, K. (2012). Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry, 133(4), 1420-1426. doi:10.1016/j.foodchem.2012.02.029 es_ES
dc.description.references Sikkens, E. C. M., Cahen, D. L., Kuipers, E. J., & Bruno, M. J. (2010). Pancreatic enzyme replacement therapy in chronic pancreatitis. Best Practice & Research Clinical Gastroenterology, 24(3), 337-347. doi:10.1016/j.bpg.2010.03.006 es_ES
dc.description.references Small, D. M. (1991). The Effects of Glyceride Structure on Absorption and Metabolism. Annual Review of Nutrition, 11(1), 413-434. doi:10.1146/annurev.nu.11.070191.002213 es_ES
dc.description.references Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004 es_ES
dc.description.references Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. (2011). Chemical composition and functional properties of Ulva lactucaUlva lactuca seaweed collected in Tunisia. Food Chemistry, 128(4), 895–901. https://doi.org/10.1016/j.foodchem. 2011.03.114. es_ES
dc.description.references Ye, Z., Cao, C., Liu, Y., Cao, P., & Li, Q. (2018). Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 111, 281-290. doi:10.1016/j.foodres.2018.05.040 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem