Mostrar el registro sencillo del ítem
dc.contributor.author | Calvo-Lerma, Joaquim | es_ES |
dc.contributor.author | Asensio-Grau, Andrea | es_ES |
dc.contributor.author | Heredia Gutiérrez, Ana Belén | es_ES |
dc.contributor.author | Andrés Grau, Ana María | es_ES |
dc.date.accessioned | 2021-02-18T04:31:56Z | |
dc.date.available | 2021-02-18T04:31:56Z | |
dc.date.issued | 2020-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161695 | |
dc.description.abstract | [EN] The scarce literature about the effect of meal-factors have on lipids digestibility encouraged the present study, in which olive oil was co-digested with naturally fat-free matrices that were rich in carbohydrate (potato and bread) or protein (degreased fresh cheese, hake and turkey) in single, binary and ternary combinations. Digestion was simulated in vitro, and the effect of co-digestion on the release of free fatty acid (FFA) from oil lipolysis were measured by gas chromatography-mass spectrometry. Regarding total FFA release, higher values were found in carbohydrate-rich systems, especially in potato, than in those with protein matrices. Thus, when co-digesting a carbohydrate matrix in addition to one or two protein matrices, lipolysis was reduced. This finding was explained by the carbohydrate and protein ratio of the resulting combinations, as the release of FFA increased with the carbohydrate/protein ratio (R-2 = 0.87, p < 0.001 in potato; R-2 = 0.81, p = 0.04 in bread systems). This study supposes the first approach towards characterisation of lipid digestion regarding food matrix nutritional composition. | es_ES |
dc.description.sponsorship | Authors of this paper acknowledge the European Union and the Horizon 2020 Research and Innovation Framework Programme (PHC-26-2014 call Self-management of health and disease: citizen engagement and mHealth) for fully funding this research under grant agreement number 643806. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | LWT - Food Science & Technology (Online) | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | In vitro digestion | es_ES |
dc.subject | Food matrix | es_ES |
dc.subject | Lipolysis | es_ES |
dc.subject | Free fatty acids | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.lwt.2019.108792 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/643806/EU/Innovative approach for self-management and social welfare of Cystic Fibrosis patients in Europe: development, validation and implementation of a telematics tool./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC//PHC-26-2014 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Calvo-Lerma, J.; Asensio-Grau, A.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2020). Screening the impact of food co-digestion on lipolysis under sub-optimal intestinal conditions. LWT - Food Science & Technology (Online). 118:1-6. https://doi.org/10.1016/j.lwt.2019.108792 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.lwt.2019.108792 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 6 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 118 | es_ES |
dc.identifier.eissn | 1096-1127 | es_ES |
dc.relation.pasarela | S\396948 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.description.references | Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025 | es_ES |
dc.description.references | Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278 | es_ES |
dc.description.references | Bedford, M. R., & Classen, H. L. (1992). Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. The Journal of Nutrition, 122(3), 560-569. doi:10.1093/jn/122.3.560 | es_ES |
dc.description.references | Bellesi, F. A., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2014). Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115-122. doi:10.1016/j.foodhyd.2013.09.010 | es_ES |
dc.description.references | Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F., & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 454-462. doi:10.1016/j.foodchem.2016.07.162 | es_ES |
dc.description.references | Brockerhoff, H., & Yurkowski, M. (1966). Stereospecific analyses of several vegetable fats. Journal of Lipid Research, 7(1), 62-64. doi:10.1016/s0022-2275(20)39585-7 | es_ES |
dc.description.references | Calvo-Lerma, J., Fornés-Ferrer, V., Peinado, I., Heredia, A., Ribes-Koninckx, C., & Andrés, A. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLOS ONE, 14(2), e0212459. doi:10.1371/journal.pone.0212459 | es_ES |
dc.description.references | Capuano, E., Oliviero, T., Fogliano, V., & Pellegrini, N. (2018). Role of the food matrix and digestion on calculation of the actual energy content of food. Nutrition Reviews, 76(4), 274-289. doi:10.1093/nutrit/nux072 | es_ES |
dc.description.references | Carrière, F., Renou, C., Lopez, V., de Caro, J., Ferrato, F., Lengsfeld, H., … Verger, R. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949-960. doi:10.1053/gast.2000.18140 | es_ES |
dc.description.references | De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., … Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ, h3978. doi:10.1136/bmj.h3978 | es_ES |
dc.description.references | Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1 | es_ES |
dc.description.references | Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101. doi:10.1016/j.cocis.2009.11.006 | es_ES |
dc.description.references | Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001 | es_ES |
dc.description.references | Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830 | es_ES |
dc.description.references | Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0 | es_ES |
dc.description.references | Jenkins, D. J., Thorne, M. J., Wolever, T. M., Jenkins, A. L., Rao, A. V., & Thompson, L. U. (1987). The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. The American Journal of Clinical Nutrition, 45(5), 946-951. doi:10.1093/ajcn/45.5.946 | es_ES |
dc.description.references | Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210-1222. doi:10.1016/j.lwt.2007.07.020 | es_ES |
dc.description.references | Kristensen, M., & Jensen, M. G. (2011). Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite, 56(1), 65-70. doi:10.1016/j.appet.2010.11.147 | es_ES |
dc.description.references | Li, Y., & McClements, D. J. (2010). New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092. doi:10.1021/jf101325m | es_ES |
dc.description.references | Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j | es_ES |
dc.description.references | Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry, 187, 499-506. doi:10.1016/j.foodchem.2015.04.065 | es_ES |
dc.description.references | Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014 | es_ES |
dc.description.references | Pilosof, A. M. R. (2017). Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocolloids, 68, 178-185. doi:10.1016/j.foodhyd.2016.08.030 | es_ES |
dc.description.references | Sasaki, T., & Kohyama, K. (2012). Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry, 133(4), 1420-1426. doi:10.1016/j.foodchem.2012.02.029 | es_ES |
dc.description.references | Sikkens, E. C. M., Cahen, D. L., Kuipers, E. J., & Bruno, M. J. (2010). Pancreatic enzyme replacement therapy in chronic pancreatitis. Best Practice & Research Clinical Gastroenterology, 24(3), 337-347. doi:10.1016/j.bpg.2010.03.006 | es_ES |
dc.description.references | Small, D. M. (1991). The Effects of Glyceride Structure on Absorption and Metabolism. Annual Review of Nutrition, 11(1), 413-434. doi:10.1146/annurev.nu.11.070191.002213 | es_ES |
dc.description.references | Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004 | es_ES |
dc.description.references | Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. (2011). Chemical composition and functional properties of Ulva lactucaUlva lactuca seaweed collected in Tunisia. Food Chemistry, 128(4), 895–901. https://doi.org/10.1016/j.foodchem. 2011.03.114. | es_ES |
dc.description.references | Ye, Z., Cao, C., Liu, Y., Cao, P., & Li, Q. (2018). Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 111, 281-290. doi:10.1016/j.foodres.2018.05.040 | es_ES |