Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025
Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278
Bedford, M. R., & Classen, H. L. (1992). Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. The Journal of Nutrition, 122(3), 560-569. doi:10.1093/jn/122.3.560
[+]
Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025
Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278
Bedford, M. R., & Classen, H. L. (1992). Reduction of Intestinal Viscosity through Manipulation of Dietary Rye and Pentosanase Concentration is Effected through Changes in the Carbohydrate Composition of the Intestinal Aqueous Phase and Results in Improved Growth Rate and Food Conversion Efficiency of Broiler Chicks. The Journal of Nutrition, 122(3), 560-569. doi:10.1093/jn/122.3.560
Bellesi, F. A., Pizones Ruiz-Henestrosa, V. M., & Pilosof, A. M. R. (2014). Behavior of protein interfacial films upon bile salts addition. Food Hydrocolloids, 36, 115-122. doi:10.1016/j.foodhyd.2013.09.010
Borges, T. H., Pereira, J. A., Cabrera-Vique, C., Lara, L., Oliveira, A. F., & Seiquer, I. (2017). Characterization of Arbequina virgin olive oils produced in different regions of Brazil and Spain: Physicochemical properties, oxidative stability and fatty acid profile. Food Chemistry, 215, 454-462. doi:10.1016/j.foodchem.2016.07.162
Brockerhoff, H., & Yurkowski, M. (1966). Stereospecific analyses of several vegetable fats. Journal of Lipid Research, 7(1), 62-64. doi:10.1016/s0022-2275(20)39585-7
Calvo-Lerma, J., Fornés-Ferrer, V., Peinado, I., Heredia, A., Ribes-Koninckx, C., & Andrés, A. (2019). A first approach for an evidence-based in vitro digestion method to adjust pancreatic enzyme replacement therapy in cystic fibrosis. PLOS ONE, 14(2), e0212459. doi:10.1371/journal.pone.0212459
Capuano, E., Oliviero, T., Fogliano, V., & Pellegrini, N. (2018). Role of the food matrix and digestion on calculation of the actual energy content of food. Nutrition Reviews, 76(4), 274-289. doi:10.1093/nutrit/nux072
Carrière, F., Renou, C., Lopez, V., de Caro, J., Ferrato, F., Lengsfeld, H., … Verger, R. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949-960. doi:10.1053/gast.2000.18140
De Souza, R. J., Mente, A., Maroleanu, A., Cozma, A. I., Ha, V., Kishibe, T., … Anand, S. S. (2015). Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ, h3978. doi:10.1136/bmj.h3978
Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1
Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 90-101. doi:10.1016/j.cocis.2009.11.006
Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001
Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830
Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0
Jenkins, D. J., Thorne, M. J., Wolever, T. M., Jenkins, A. L., Rao, A. V., & Thompson, L. U. (1987). The effect of starch-protein interaction in wheat on the glycemic response and rate of in vitro digestion. The American Journal of Clinical Nutrition, 45(5), 946-951. doi:10.1093/ajcn/45.5.946
Kong, F., Tang, J., Lin, M., & Rasco, B. (2008). Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT - Food Science and Technology, 41(7), 1210-1222. doi:10.1016/j.lwt.2007.07.020
Kristensen, M., & Jensen, M. G. (2011). Dietary fibres in the regulation of appetite and food intake. Importance of viscosity. Appetite, 56(1), 65-70. doi:10.1016/j.appet.2010.11.147
Li, Y., & McClements, D. J. (2010). New Mathematical Model for Interpreting pH-Stat Digestion Profiles: Impact of Lipid Droplet Characteristics on in Vitro Digestibility. Journal of Agricultural and Food Chemistry, 58(13), 8085-8092. doi:10.1021/jf101325m
Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., … Brodkorb, A. (2014). A standardised staticin vitrodigestion method suitable for food – an international consensus. Food Funct., 5(6), 1113-1124. doi:10.1039/c3fo60702j
Ozturk, B., Argin, S., Ozilgen, M., & McClements, D. J. (2015). Nanoemulsion delivery systems for oil-soluble vitamins: Influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chemistry, 187, 499-506. doi:10.1016/j.foodchem.2015.04.065
Paz-Yépez, C., Peinado, I., Heredia, A., & Andrés, A. (2019). Influence of particle size and intestinal conditions on in vitro lipid and protein digestibility of walnuts and peanuts. Food Research International, 119, 951-959. doi:10.1016/j.foodres.2018.11.014
Pilosof, A. M. R. (2017). Potential impact of interfacial composition of proteins and polysaccharides stabilized emulsions on the modulation of lipolysis. The role of bile salts. Food Hydrocolloids, 68, 178-185. doi:10.1016/j.foodhyd.2016.08.030
Sasaki, T., & Kohyama, K. (2012). Influence of non-starch polysaccharides on the in vitro digestibility and viscosity of starch suspensions. Food Chemistry, 133(4), 1420-1426. doi:10.1016/j.foodchem.2012.02.029
Sikkens, E. C. M., Cahen, D. L., Kuipers, E. J., & Bruno, M. J. (2010). Pancreatic enzyme replacement therapy in chronic pancreatitis. Best Practice & Research Clinical Gastroenterology, 24(3), 337-347. doi:10.1016/j.bpg.2010.03.006
Small, D. M. (1991). The Effects of Glyceride Structure on Absorption and Metabolism. Annual Review of Nutrition, 11(1), 413-434. doi:10.1146/annurev.nu.11.070191.002213
Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004
Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. (2011). Chemical composition and functional properties of Ulva lactucaUlva lactuca seaweed collected in Tunisia. Food Chemistry, 128(4), 895–901. https://doi.org/10.1016/j.foodchem. 2011.03.114.
Ye, Z., Cao, C., Liu, Y., Cao, P., & Li, Q. (2018). Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International, 111, 281-290. doi:10.1016/j.foodres.2018.05.040
[-]