Mostrar el registro sencillo del ítem
dc.contributor.author | Torres-Carrillo, Sharon | es_ES |
dc.contributor.author | Siller, Héctor R. | es_ES |
dc.contributor.author | Vila, C. | es_ES |
dc.contributor.author | López, Cecilio | es_ES |
dc.contributor.author | Rodríguez, Ciro A. | es_ES |
dc.date.accessioned | 2021-02-18T04:32:00Z | |
dc.date.available | 2021-02-18T04:32:00Z | |
dc.date.issued | 2020-02-10 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161696 | |
dc.description.abstract | [EN] The exponential growth of additive manufacturing technologies is not only improving production processes to achieve functional requirements for products, but it could also help to minimize environmental impacts. In order to align a green product lifecycle management vision, companies need to implement emerging technologies and define a set of metrics that measure the benefits of the change. Each product requires a particular and optimized manufacturing process plan, and each production phase must achieve a significant reduction of critical metrics for the whole Life Cycle Assessment (LCA). This paper provides a comprehensive and comparative LCA of two manufacturing process plans for the case study of an aircraft engine turbine blade. The first process consists of a combination of Investment Casting and Precision Machining and the second consists in the replacement of Investment casting by Selective Laser Melting as an emergent process for near net shape fabrication. The collected data for the comparison includes Global Warming Potential (GWP), Acidification Potential (AP), Ozone layer Depletion Potential (ODP), Human Toxicity Potential (HTP), and Human Toxicity (HT) with cancer and non-cancer effects. The relative analysis shows that, for the critical indicators, an apparent improvement in CO2 emissions reduction is achieved as well as in the other hazardous emissions. The results showed that the whole lifecycle of Conventional Manufacturing corresponds to 7.32 tons of CO2, while, the emission of the Additive Manufacturing is 7.02 tons of CO2. The results analysis can be used for decision-making, and it can help for facing future comparative works to explore cleaner manufacturing technologies. | es_ES |
dc.description.sponsorship | The authors want to acknowledge the support of The National Council on Science and Technology (CONACYT) through the following grants PEI#221185, and LN#280867. Additional support was provided by the CONACyT Mixed Scholarships Program, by Universitat Politecnica de Valencia and by the Research Group of Advanced Manufacturing at Tecnologico de Monterrey. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Additive manufacturing | es_ES |
dc.subject | Life cycle assessment | es_ES |
dc.subject | Selective laser melting | es_ES |
dc.subject | Aerospace manufacturing | es_ES |
dc.subject | Environmental impact | es_ES |
dc.subject.classification | INGENIERIA DE LOS PROCESOS DE FABRICACION | es_ES |
dc.title | Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2019.119068 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//221185/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CONACyT//280867/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Torres-Carrillo, S.; Siller, HR.; Vila, C.; López, C.; Rodríguez, CA. (2020). Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades. Journal of Cleaner Production. 246:1-14. https://doi.org/10.1016/j.jclepro.2019.119068 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2019.119068 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 246 | es_ES |
dc.relation.pasarela | S\415907 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Instituto Tecnológico y de Estudios Superiores de Monterrey | es_ES |
dc.description.references | Burkhart, M., & Aurich, J. C. (2015). Framework to Predict the Environmental Impact of Additive Manufacturing in the Life Cycle of a Commercial Vehicle. Procedia CIRP, 29, 408-413. doi:10.1016/j.procir.2015.02.194 | es_ES |
dc.description.references | Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2016). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? Journal of Industrial Ecology, 21(S1). doi:10.1111/jiec.12528 | es_ES |
dc.description.references | Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167. doi:10.1016/j.enpol.2014.08.033 | es_ES |
dc.description.references | Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., … Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570. doi:10.1016/j.jclepro.2015.04.109 | es_ES |
dc.description.references | Ingarao, G., Priarone, P. C., Deng, Y., & Paraskevas, D. (2018). Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming. Journal of Cleaner Production, 176, 261-275. doi:10.1016/j.jclepro.2017.12.115 | es_ES |
dc.description.references | Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., & Duflou, J. R. (2017). Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing? Procedia CIRP, 61, 582-587. doi:10.1016/j.procir.2016.11.153 | es_ES |
dc.description.references | Le Bourhis, F., Kerbrat, O., Dembinski, L., Hascoet, J.-Y., & Mognol, P. (2014). Predictive Model for Environmental Assessment in Additive Manufacturing Process. Procedia CIRP, 15, 26-31. doi:10.1016/j.procir.2014.06.031 | es_ES |
dc.description.references | Lenzen, M., Murray, S. A., Korte, B., & Dey, C. J. (2003). Environmental impact assessment including indirect effects—a case study using input–output analysis. Environmental Impact Assessment Review, 23(3), 263-282. doi:10.1016/s0195-9255(02)00104-x | es_ES |
dc.description.references | Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932-943. doi:10.1016/j.jclepro.2005.11.030 | es_ES |
dc.description.references | Nyamekye, P., Leino, M., Piili, H., & Salminen, A. (2015). Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel. Physics Procedia, 78, 367-376. doi:10.1016/j.phpro.2015.11.051 | es_ES |
dc.description.references | Paris, H., Mokhtarian, H., Coatanéa, E., Museau, M., & Ituarte, I. F. (2016). Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Annals, 65(1), 29-32. doi:10.1016/j.cirp.2016.04.036 | es_ES |
dc.description.references | Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348. doi:10.1016/j.jmatprotec.2012.06.003 | es_ES |
dc.description.references | Priarone, P. C., & Ingarao, G. (2017). Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. Journal of Cleaner Production, 144, 57-68. doi:10.1016/j.jclepro.2016.12.165 | es_ES |
dc.description.references | Read, N., Wang, W., Essa, K., & Attallah, M. M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015), 65, 417-424. doi:10.1016/j.matdes.2014.09.044 | es_ES |
dc.description.references | Serres, N., Tidu, D., Sankare, S., & Hlawka, F. (2011). Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment. Journal of Cleaner Production, 19(9-10), 1117-1124. doi:10.1016/j.jclepro.2010.12.010 | es_ES |
dc.description.references | Vilaro, T., Colin, C., Bartout, J. D., Nazé, L., & Sennour, M. (2012). Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Materials Science and Engineering: A, 534, 446-451. doi:10.1016/j.msea.2011.11.092 | es_ES |
dc.description.references | Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178. doi:10.1016/j.jclepro.2014.05.084 | es_ES |
dc.description.references | Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1-10. doi:10.5402/2012/208760 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |
dc.subject.ods | 12.- Garantizar las pautas de consumo y de producción sostenibles | es_ES |