- -

Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torres-Carrillo, Sharon es_ES
dc.contributor.author Siller, Héctor R. es_ES
dc.contributor.author Vila, C. es_ES
dc.contributor.author López, Cecilio es_ES
dc.contributor.author Rodríguez, Ciro A. es_ES
dc.date.accessioned 2021-02-18T04:32:00Z
dc.date.available 2021-02-18T04:32:00Z
dc.date.issued 2020-02-10 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161696
dc.description.abstract [EN] The exponential growth of additive manufacturing technologies is not only improving production processes to achieve functional requirements for products, but it could also help to minimize environmental impacts. In order to align a green product lifecycle management vision, companies need to implement emerging technologies and define a set of metrics that measure the benefits of the change. Each product requires a particular and optimized manufacturing process plan, and each production phase must achieve a significant reduction of critical metrics for the whole Life Cycle Assessment (LCA). This paper provides a comprehensive and comparative LCA of two manufacturing process plans for the case study of an aircraft engine turbine blade. The first process consists of a combination of Investment Casting and Precision Machining and the second consists in the replacement of Investment casting by Selective Laser Melting as an emergent process for near net shape fabrication. The collected data for the comparison includes Global Warming Potential (GWP), Acidification Potential (AP), Ozone layer Depletion Potential (ODP), Human Toxicity Potential (HTP), and Human Toxicity (HT) with cancer and non-cancer effects. The relative analysis shows that, for the critical indicators, an apparent improvement in CO2 emissions reduction is achieved as well as in the other hazardous emissions. The results showed that the whole lifecycle of Conventional Manufacturing corresponds to 7.32 tons of CO2, while, the emission of the Additive Manufacturing is 7.02 tons of CO2. The results analysis can be used for decision-making, and it can help for facing future comparative works to explore cleaner manufacturing technologies. es_ES
dc.description.sponsorship The authors want to acknowledge the support of The National Council on Science and Technology (CONACYT) through the following grants PEI#221185, and LN#280867. Additional support was provided by the CONACyT Mixed Scholarships Program, by Universitat Politecnica de Valencia and by the Research Group of Advanced Manufacturing at Tecnologico de Monterrey. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Additive manufacturing es_ES
dc.subject Life cycle assessment es_ES
dc.subject Selective laser melting es_ES
dc.subject Aerospace manufacturing es_ES
dc.subject Environmental impact es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2019.119068 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//221185/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//280867/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Torres-Carrillo, S.; Siller, HR.; Vila, C.; López, C.; Rodríguez, CA. (2020). Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades. Journal of Cleaner Production. 246:1-14. https://doi.org/10.1016/j.jclepro.2019.119068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2019.119068 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 246 es_ES
dc.relation.pasarela S\415907 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Instituto Tecnológico y de Estudios Superiores de Monterrey es_ES
dc.description.references Burkhart, M., & Aurich, J. C. (2015). Framework to Predict the Environmental Impact of Additive Manufacturing in the Life Cycle of a Commercial Vehicle. Procedia CIRP, 29, 408-413. doi:10.1016/j.procir.2015.02.194 es_ES
dc.description.references Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2016). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? Journal of Industrial Ecology, 21(S1). doi:10.1111/jiec.12528 es_ES
dc.description.references Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167. doi:10.1016/j.enpol.2014.08.033 es_ES
dc.description.references Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., … Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570. doi:10.1016/j.jclepro.2015.04.109 es_ES
dc.description.references Ingarao, G., Priarone, P. C., Deng, Y., & Paraskevas, D. (2018). Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming. Journal of Cleaner Production, 176, 261-275. doi:10.1016/j.jclepro.2017.12.115 es_ES
dc.description.references Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., & Duflou, J. R. (2017). Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing? Procedia CIRP, 61, 582-587. doi:10.1016/j.procir.2016.11.153 es_ES
dc.description.references Le Bourhis, F., Kerbrat, O., Dembinski, L., Hascoet, J.-Y., & Mognol, P. (2014). Predictive Model for Environmental Assessment in Additive Manufacturing Process. Procedia CIRP, 15, 26-31. doi:10.1016/j.procir.2014.06.031 es_ES
dc.description.references Lenzen, M., Murray, S. A., Korte, B., & Dey, C. J. (2003). Environmental impact assessment including indirect effects—a case study using input–output analysis. Environmental Impact Assessment Review, 23(3), 263-282. doi:10.1016/s0195-9255(02)00104-x es_ES
dc.description.references Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932-943. doi:10.1016/j.jclepro.2005.11.030 es_ES
dc.description.references Nyamekye, P., Leino, M., Piili, H., & Salminen, A. (2015). Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel. Physics Procedia, 78, 367-376. doi:10.1016/j.phpro.2015.11.051 es_ES
dc.description.references Paris, H., Mokhtarian, H., Coatanéa, E., Museau, M., & Ituarte, I. F. (2016). Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Annals, 65(1), 29-32. doi:10.1016/j.cirp.2016.04.036 es_ES
dc.description.references Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348. doi:10.1016/j.jmatprotec.2012.06.003 es_ES
dc.description.references Priarone, P. C., & Ingarao, G. (2017). Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. Journal of Cleaner Production, 144, 57-68. doi:10.1016/j.jclepro.2016.12.165 es_ES
dc.description.references Read, N., Wang, W., Essa, K., & Attallah, M. M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015), 65, 417-424. doi:10.1016/j.matdes.2014.09.044 es_ES
dc.description.references Serres, N., Tidu, D., Sankare, S., & Hlawka, F. (2011). Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment. Journal of Cleaner Production, 19(9-10), 1117-1124. doi:10.1016/j.jclepro.2010.12.010 es_ES
dc.description.references Vilaro, T., Colin, C., Bartout, J. D., Nazé, L., & Sennour, M. (2012). Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Materials Science and Engineering: A, 534, 446-451. doi:10.1016/j.msea.2011.11.092 es_ES
dc.description.references Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178. doi:10.1016/j.jclepro.2014.05.084 es_ES
dc.description.references Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1-10. doi:10.5402/2012/208760 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem