- -

Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades

Mostrar el registro completo del ítem

Torres-Carrillo, S.; Siller, HR.; Vila, C.; López, C.; Rodríguez, CA. (2020). Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades. Journal of Cleaner Production. 246:1-14. https://doi.org/10.1016/j.jclepro.2019.119068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161696

Ficheros en el ítem

Metadatos del ítem

Título: Environmental analysis of selective laser melting in the manufacturing of aeronautical turbine blades
Autor: Torres-Carrillo, Sharon Siller, Héctor R. Vila, C. López, Cecilio Rodríguez, Ciro A.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] The exponential growth of additive manufacturing technologies is not only improving production processes to achieve functional requirements for products, but it could also help to minimize environmental impacts. In ...[+]
Palabras clave: Additive manufacturing , Life cycle assessment , Selective laser melting , Aerospace manufacturing , Environmental impact
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Cleaner Production. (issn: 0959-6526 )
DOI: 10.1016/j.jclepro.2019.119068
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jclepro.2019.119068
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//221185/
info:eu-repo/grantAgreement/CONACyT//280867/
Agradecimientos:
The authors want to acknowledge the support of The National Council on Science and Technology (CONACYT) through the following grants PEI#221185, and LN#280867. Additional support was provided by the CONACyT Mixed Scholarships ...[+]
Tipo: Artículo

References

Burkhart, M., & Aurich, J. C. (2015). Framework to Predict the Environmental Impact of Additive Manufacturing in the Life Cycle of a Commercial Vehicle. Procedia CIRP, 29, 408-413. doi:10.1016/j.procir.2015.02.194

Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2016). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? Journal of Industrial Ecology, 21(S1). doi:10.1111/jiec.12528

Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167. doi:10.1016/j.enpol.2014.08.033 [+]
Burkhart, M., & Aurich, J. C. (2015). Framework to Predict the Environmental Impact of Additive Manufacturing in the Life Cycle of a Commercial Vehicle. Procedia CIRP, 29, 408-413. doi:10.1016/j.procir.2015.02.194

Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2016). Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate? Journal of Industrial Ecology, 21(S1). doi:10.1111/jiec.12528

Gebler, M., Schoot Uiterkamp, A. J. M., & Visser, C. (2014). A global sustainability perspective on 3D printing technologies. Energy Policy, 74, 158-167. doi:10.1016/j.enpol.2014.08.033

Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., … Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570. doi:10.1016/j.jclepro.2015.04.109

Ingarao, G., Priarone, P. C., Deng, Y., & Paraskevas, D. (2018). Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming. Journal of Cleaner Production, 176, 261-275. doi:10.1016/j.jclepro.2017.12.115

Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., & Duflou, J. R. (2017). Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing? Procedia CIRP, 61, 582-587. doi:10.1016/j.procir.2016.11.153

Le Bourhis, F., Kerbrat, O., Dembinski, L., Hascoet, J.-Y., & Mognol, P. (2014). Predictive Model for Environmental Assessment in Additive Manufacturing Process. Procedia CIRP, 15, 26-31. doi:10.1016/j.procir.2014.06.031

Lenzen, M., Murray, S. A., Korte, B., & Dey, C. J. (2003). Environmental impact assessment including indirect effects—a case study using input–output analysis. Environmental Impact Assessment Review, 23(3), 263-282. doi:10.1016/s0195-9255(02)00104-x

Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932-943. doi:10.1016/j.jclepro.2005.11.030

Nyamekye, P., Leino, M., Piili, H., & Salminen, A. (2015). Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steel. Physics Procedia, 78, 367-376. doi:10.1016/j.phpro.2015.11.051

Paris, H., Mokhtarian, H., Coatanéa, E., Museau, M., & Ituarte, I. F. (2016). Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Annals, 65(1), 29-32. doi:10.1016/j.cirp.2016.04.036

Pattnaik, S., Karunakar, D. B., & Jha, P. K. (2012). Developments in investment casting process—A review. Journal of Materials Processing Technology, 212(11), 2332-2348. doi:10.1016/j.jmatprotec.2012.06.003

Priarone, P. C., & Ingarao, G. (2017). Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. Journal of Cleaner Production, 144, 57-68. doi:10.1016/j.jclepro.2016.12.165

Read, N., Wang, W., Essa, K., & Attallah, M. M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015), 65, 417-424. doi:10.1016/j.matdes.2014.09.044

Serres, N., Tidu, D., Sankare, S., & Hlawka, F. (2011). Environmental comparison of MESO-CLAD® process and conventional machining implementing life cycle assessment. Journal of Cleaner Production, 19(9-10), 1117-1124. doi:10.1016/j.jclepro.2010.12.010

Vilaro, T., Colin, C., Bartout, J. D., Nazé, L., & Sennour, M. (2012). Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy. Materials Science and Engineering: A, 534, 446-451. doi:10.1016/j.msea.2011.11.092

Wilson, J. M., Piya, C., Shin, Y. C., Zhao, F., & Ramani, K. (2014). Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. Journal of Cleaner Production, 80, 170-178. doi:10.1016/j.jclepro.2014.05.084

Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1-10. doi:10.5402/2012/208760

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem