Mostrar el registro sencillo del ítem
dc.contributor.author | Hernández-Verón, M.A. | es_ES |
dc.contributor.author | Martínez Molada, Eulalia | es_ES |
dc.date.accessioned | 2021-02-18T04:32:05Z | |
dc.date.available | 2021-02-18T04:32:05Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161697 | |
dc.description.abstract | [EN] From decomposition method for operators, we consider a Newton-Steffensen iterative scheme for approximating a solution of nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. By means of a convergence study of the iterative scheme applied to this type of nonlinear Fredholm integral equations, we obtain domains of existence and uniqueness of solution for these equations. In addition, we illustrate this study with a numerical experiment. | es_ES |
dc.description.sponsorship | Ministerio de Economia y Competitividad, Grant/Award Number: PGC2018-095896-B-C21; Project of Generalitat Valenciana Prometeo, Grant/Award Number: 2016/089 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Domain of existence of solution | es_ES |
dc.subject | Domain of uniqueness of solution | es_ES |
dc.subject | Fredholm integral equation | es_ES |
dc.subject | Two-steps Newton iterative scheme | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5801 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Hernández-Verón, M.; Martínez Molada, E. (2020). On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. Mathematical Methods in the Applied Sciences. 43(14):7961-7976. https://doi.org/10.1002/mma.5801 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5801 | es_ES |
dc.description.upvformatpinicio | 7961 | es_ES |
dc.description.upvformatpfin | 7976 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\394075 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Mirzaee, F., & Samadyar, N. (2018). On the numerical solution of stochastic quadratic integral equations via operational matrix method. Mathematical Methods in the Applied Sciences, 41(12), 4465-4479. doi:10.1002/mma.4907 | es_ES |
dc.description.references | Mirzaee, F., & Samadyar, N. (2018). Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Engineering Analysis with Boundary Elements, 92, 180-195. doi:10.1016/j.enganabound.2017.12.017 | es_ES |
dc.description.references | Mirzaee, F., & Hadadiyan, E. (2016). Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Mathematical Methods in the Applied Sciences, 40(10), 3433-3444. doi:10.1002/mma.4237 | es_ES |
dc.description.references | Ordokhani, Y., & Razzaghi, M. (2008). Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Applied Mathematics Letters, 21(1), 4-9. doi:10.1016/j.aml.2007.02.007 | es_ES |
dc.description.references | Mirzaee, F., & Bimesl, S. (2014). Application of Euler Matrix Method for Solving Linear and a Class of Nonlinear Fredholm Integro-Differential Equations. Mediterranean Journal of Mathematics, 11(3), 999-1018. doi:10.1007/s00009-014-0391-4 | es_ES |
dc.description.references | Mirzaee, F., & Samadyar, N. (2017). Application of operational matrices for solving system of linear Stratonovich Volterra integral equation. Journal of Computational and Applied Mathematics, 320, 164-175. doi:10.1016/j.cam.2017.02.007 | es_ES |
dc.description.references | Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181 | es_ES |
dc.description.references | Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Differential Equations. doi:10.1017/cbo9780511543234 | es_ES |
dc.description.references | Moore, C. (2000). Picard Iterations for Solution of Nonlinear Equations in Certain Banach Spaces. Journal of Mathematical Analysis and Applications, 245(2), 317-325. doi:10.1006/jmaa.2000.6718 | es_ES |
dc.description.references | Wazwaz, A. M. (1997). A First Course in Integral Equations. doi:10.1142/3444 | es_ES |
dc.description.references | Ezquerro, J. A., & Hernández, M. A. (2008). Picard’s Iterations for Integral Equations of Mixed Hammerstein Type. Canadian Mathematical Bulletin, 51(3), 372-377. doi:10.4153/cmb-2008-037-9 | es_ES |
dc.description.references | Hernández, M. A., & Salanova, M. A. (2005). A Newton-Like Iterative Process for the Numerical Solution of Fredholm Nonlinear Integral Equations. Journal of Integral Equations and Applications, 17(1). doi:10.1216/jiea/1181075309 | es_ES |
dc.description.references | Ezquerro, J. A., & Hernández, M. A. (2009). Fourth-order iterations for solving Hammerstein integral equations. Applied Numerical Mathematics, 59(6), 1149-1158. doi:10.1016/j.apnum.2008.05.005 | es_ES |
dc.description.references | ATKINSON, K., & FLORES, J. (1993). The discrete collocation method for nonlinear integral equations. IMA Journal of Numerical Analysis, 13(2), 195-213. doi:10.1093/imanum/13.2.195 | es_ES |
dc.description.references | Cherruault, Y., Saccomandi, G., & Some, B. (1992). New results for convergence of Adomian’s method applied to integral equations. Mathematical and Computer Modelling, 16(2), 85-93. doi:10.1016/0895-7177(92)90009-a | es_ES |
dc.description.references | Alarcón, V., Amat, S., Busquier, S., & López, D. J. (2008). A Steffensen’s type method in Banach spaces with applications on boundary-value problems. Journal of Computational and Applied Mathematics, 216(1), 243-250. doi:10.1016/j.cam.2007.05.008 | es_ES |
dc.description.references | Ezquerro, J. A., Hernández, M. A., Romero, N., & Velasco, A. I. (2013). On Steffensen’s method on Banach spaces. Journal of Computational and Applied Mathematics, 249, 9-23. doi:10.1016/j.cam.2013.02.004 | es_ES |
dc.description.references | Hernández-Verón, M. A., & Martínez, E. (2018). Improving the accessibility of Steffensen’s method by decomposition of operators. Journal of Computational and Applied Mathematics, 330, 536-552. doi:10.1016/j.cam.2017.09.025 | es_ES |