- -

On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Verón, M.A. es_ES
dc.contributor.author Martínez Molada, Eulalia es_ES
dc.date.accessioned 2021-02-18T04:32:05Z
dc.date.available 2021-02-18T04:32:05Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161697
dc.description.abstract [EN] From decomposition method for operators, we consider a Newton-Steffensen iterative scheme for approximating a solution of nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. By means of a convergence study of the iterative scheme applied to this type of nonlinear Fredholm integral equations, we obtain domains of existence and uniqueness of solution for these equations. In addition, we illustrate this study with a numerical experiment. es_ES
dc.description.sponsorship Ministerio de Economia y Competitividad, Grant/Award Number: PGC2018-095896-B-C21; Project of Generalitat Valenciana Prometeo, Grant/Award Number: 2016/089 es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Domain of existence of solution es_ES
dc.subject Domain of uniqueness of solution es_ES
dc.subject Fredholm integral equation es_ES
dc.subject Two-steps Newton iterative scheme es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5801 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Hernández-Verón, M.; Martínez Molada, E. (2020). On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. Mathematical Methods in the Applied Sciences. 43(14):7961-7976. https://doi.org/10.1002/mma.5801 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5801 es_ES
dc.description.upvformatpinicio 7961 es_ES
dc.description.upvformatpfin 7976 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\394075 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Mirzaee, F., & Samadyar, N. (2018). On the numerical solution of stochastic quadratic integral equations via operational matrix method. Mathematical Methods in the Applied Sciences, 41(12), 4465-4479. doi:10.1002/mma.4907 es_ES
dc.description.references Mirzaee, F., & Samadyar, N. (2018). Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Engineering Analysis with Boundary Elements, 92, 180-195. doi:10.1016/j.enganabound.2017.12.017 es_ES
dc.description.references Mirzaee, F., & Hadadiyan, E. (2016). Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Mathematical Methods in the Applied Sciences, 40(10), 3433-3444. doi:10.1002/mma.4237 es_ES
dc.description.references Ordokhani, Y., & Razzaghi, M. (2008). Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Applied Mathematics Letters, 21(1), 4-9. doi:10.1016/j.aml.2007.02.007 es_ES
dc.description.references Mirzaee, F., & Bimesl, S. (2014). Application of Euler Matrix Method for Solving Linear and a Class of Nonlinear Fredholm Integro-Differential Equations. Mediterranean Journal of Mathematics, 11(3), 999-1018. doi:10.1007/s00009-014-0391-4 es_ES
dc.description.references Mirzaee, F., & Samadyar, N. (2017). Application of operational matrices for solving system of linear Stratonovich Volterra integral equation. Journal of Computational and Applied Mathematics, 320, 164-175. doi:10.1016/j.cam.2017.02.007 es_ES
dc.description.references Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181 es_ES
dc.description.references Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Differential Equations. doi:10.1017/cbo9780511543234 es_ES
dc.description.references Moore, C. (2000). Picard Iterations for Solution of Nonlinear Equations in Certain Banach Spaces. Journal of Mathematical Analysis and Applications, 245(2), 317-325. doi:10.1006/jmaa.2000.6718 es_ES
dc.description.references Wazwaz, A. M. (1997). A First Course in Integral Equations. doi:10.1142/3444 es_ES
dc.description.references Ezquerro, J. A., & Hernández, M. A. (2008). Picard’s Iterations for Integral Equations of Mixed Hammerstein Type. Canadian Mathematical Bulletin, 51(3), 372-377. doi:10.4153/cmb-2008-037-9 es_ES
dc.description.references Hernández, M. A., & Salanova, M. A. (2005). A Newton-Like Iterative Process for the Numerical Solution of Fredholm Nonlinear Integral Equations. Journal of Integral Equations and Applications, 17(1). doi:10.1216/jiea/1181075309 es_ES
dc.description.references Ezquerro, J. A., & Hernández, M. A. (2009). Fourth-order iterations for solving Hammerstein integral equations. Applied Numerical Mathematics, 59(6), 1149-1158. doi:10.1016/j.apnum.2008.05.005 es_ES
dc.description.references ATKINSON, K., & FLORES, J. (1993). The discrete collocation method for nonlinear integral equations. IMA Journal of Numerical Analysis, 13(2), 195-213. doi:10.1093/imanum/13.2.195 es_ES
dc.description.references Cherruault, Y., Saccomandi, G., & Some, B. (1992). New results for convergence of Adomian’s method applied to integral equations. Mathematical and Computer Modelling, 16(2), 85-93. doi:10.1016/0895-7177(92)90009-a es_ES
dc.description.references Alarcón, V., Amat, S., Busquier, S., & López, D. J. (2008). A Steffensen’s type method in Banach spaces with applications on boundary-value problems. Journal of Computational and Applied Mathematics, 216(1), 243-250. doi:10.1016/j.cam.2007.05.008 es_ES
dc.description.references Ezquerro, J. A., Hernández, M. A., Romero, N., & Velasco, A. I. (2013). On Steffensen’s method on Banach spaces. Journal of Computational and Applied Mathematics, 249, 9-23. doi:10.1016/j.cam.2013.02.004 es_ES
dc.description.references Hernández-Verón, M. A., & Martínez, E. (2018). Improving the accessibility of Steffensen’s method by decomposition of operators. Journal of Computational and Applied Mathematics, 330, 536-552. doi:10.1016/j.cam.2017.09.025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem