- -

On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator

Mostrar el registro completo del ítem

Hernández-Verón, M.; Martínez Molada, E. (2020). On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. Mathematical Methods in the Applied Sciences. 43(14):7961-7976. https://doi.org/10.1002/mma.5801

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161697

Ficheros en el ítem

Metadatos del ítem

Título: On nonlinear Fredholm integral equations with non-differentiable Nemystkii operator
Autor: Hernández-Verón, M.A. Martínez Molada, Eulalia
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] From decomposition method for operators, we consider a Newton-Steffensen iterative scheme for approximating a solution of nonlinear Fredholm integral equations with non-differentiable Nemystkii operator. By means of ...[+]
Palabras clave: Domain of existence of solution , Domain of uniqueness of solution , Fredholm integral equation , Two-steps Newton iterative scheme
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.5801
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.5801
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Agradecimientos:
Ministerio de Economia y Competitividad, Grant/Award Number: PGC2018-095896-B-C21; Project of Generalitat Valenciana Prometeo, Grant/Award Number: 2016/089
Tipo: Artículo

References

Mirzaee, F., & Samadyar, N. (2018). On the numerical solution of stochastic quadratic integral equations via operational matrix method. Mathematical Methods in the Applied Sciences, 41(12), 4465-4479. doi:10.1002/mma.4907

Mirzaee, F., & Samadyar, N. (2018). Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Engineering Analysis with Boundary Elements, 92, 180-195. doi:10.1016/j.enganabound.2017.12.017

Mirzaee, F., & Hadadiyan, E. (2016). Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Mathematical Methods in the Applied Sciences, 40(10), 3433-3444. doi:10.1002/mma.4237 [+]
Mirzaee, F., & Samadyar, N. (2018). On the numerical solution of stochastic quadratic integral equations via operational matrix method. Mathematical Methods in the Applied Sciences, 41(12), 4465-4479. doi:10.1002/mma.4907

Mirzaee, F., & Samadyar, N. (2018). Using radial basis functions to solve two dimensional linear stochastic integral equations on non-rectangular domains. Engineering Analysis with Boundary Elements, 92, 180-195. doi:10.1016/j.enganabound.2017.12.017

Mirzaee, F., & Hadadiyan, E. (2016). Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations. Mathematical Methods in the Applied Sciences, 40(10), 3433-3444. doi:10.1002/mma.4237

Ordokhani, Y., & Razzaghi, M. (2008). Solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via a collocation method and rationalized Haar functions. Applied Mathematics Letters, 21(1), 4-9. doi:10.1016/j.aml.2007.02.007

Mirzaee, F., & Bimesl, S. (2014). Application of Euler Matrix Method for Solving Linear and a Class of Nonlinear Fredholm Integro-Differential Equations. Mediterranean Journal of Mathematics, 11(3), 999-1018. doi:10.1007/s00009-014-0391-4

Mirzaee, F., & Samadyar, N. (2017). Application of operational matrices for solving system of linear Stratonovich Volterra integral equation. Journal of Computational and Applied Mathematics, 320, 164-175. doi:10.1016/j.cam.2017.02.007

Nadir, M., & Khirani, A. (2016). Adapted Newton-Kantorovich Methods for Nonlinear Integral Equations. Journal of Mathematics and Statistics, 12(3), 176-181. doi:10.3844/jmssp.2016.176.181

Brunner, H. (2004). Collocation Methods for Volterra Integral and Related Functional Differential Equations. doi:10.1017/cbo9780511543234

Moore, C. (2000). Picard Iterations for Solution of Nonlinear Equations in Certain Banach Spaces. Journal of Mathematical Analysis and Applications, 245(2), 317-325. doi:10.1006/jmaa.2000.6718

Wazwaz, A. M. (1997). A First Course in Integral Equations. doi:10.1142/3444

Ezquerro, J. A., & Hernández, M. A. (2008). Picard’s Iterations for Integral Equations of Mixed Hammerstein Type. Canadian Mathematical Bulletin, 51(3), 372-377. doi:10.4153/cmb-2008-037-9

Hernández, M. A., & Salanova, M. A. (2005). A Newton-Like Iterative Process for the Numerical Solution of Fredholm Nonlinear Integral Equations. Journal of Integral Equations and Applications, 17(1). doi:10.1216/jiea/1181075309

Ezquerro, J. A., & Hernández, M. A. (2009). Fourth-order iterations for solving Hammerstein integral equations. Applied Numerical Mathematics, 59(6), 1149-1158. doi:10.1016/j.apnum.2008.05.005

ATKINSON, K., & FLORES, J. (1993). The discrete collocation method for nonlinear integral equations. IMA Journal of Numerical Analysis, 13(2), 195-213. doi:10.1093/imanum/13.2.195

Cherruault, Y., Saccomandi, G., & Some, B. (1992). New results for convergence of Adomian’s method applied to integral equations. Mathematical and Computer Modelling, 16(2), 85-93. doi:10.1016/0895-7177(92)90009-a

Alarcón, V., Amat, S., Busquier, S., & López, D. J. (2008). A Steffensen’s type method in Banach spaces with applications on boundary-value problems. Journal of Computational and Applied Mathematics, 216(1), 243-250. doi:10.1016/j.cam.2007.05.008

Ezquerro, J. A., Hernández, M. A., Romero, N., & Velasco, A. I. (2013). On Steffensen’s method on Banach spaces. Journal of Computational and Applied Mathematics, 249, 9-23. doi:10.1016/j.cam.2013.02.004

Hernández-Verón, M. A., & Martínez, E. (2018). Improving the accessibility of Steffensen’s method by decomposition of operators. Journal of Computational and Applied Mathematics, 330, 536-552. doi:10.1016/j.cam.2017.09.025

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem