- -

InSilico Classifiers for the Assessment of Drug Proarrhythmicity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

InSilico Classifiers for the Assessment of Drug Proarrhythmicity

Show full item record

Llopis-Lorente, J.; Gomis-Tena Dolz, J.; Cano, J.; Romero Pérez, L.; Saiz Rodríguez, FJ.; Trenor Gomis, BA. (2020). InSilico Classifiers for the Assessment of Drug Proarrhythmicity. Journal of Chemical Information and Modeling. 60(10):5172-5187. https://doi.org/10.1021/acs.jcim.0c00201

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161698

Files in this item

Item Metadata

Title: InSilico Classifiers for the Assessment of Drug Proarrhythmicity
Author: Llopis-Lorente, Jordi Gomis-Tena Dolz, Julio Cano, Jordi Romero Pérez, Lucia Saiz Rodríguez, Francisco Javier Trenor Gomis, Beatriz Ana
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they ...[+]
Copyrigths: Reserva de todos los derechos
Source:
Journal of Chemical Information and Modeling. (issn: 1549-9596 )
DOI: 10.1021/acs.jcim.0c00201
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/acs.jcim.0c00201
Project ID:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/MCIU//FPU18%2F01659/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2020%2F043/ES/MODELOS IN-SILICO MULTI-FISICOS Y MULTI-ESCALA DEL CORAZON PARA EL DESARROLLO DE NUEVOS METODOS DE PREVENCION, DIAGNOSTICO Y TRATAMIENTO EN MEDICINA PERSONALIZADA (HEART IN-SILICO MODELS)/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104356RB-C41/ES/MODELO MULTIESCALA DE PATOLOGIAS CARDIACAS Y OPTIMIZACION DE TERAPIAS PERSONALIZADAS/
Thanks:
This work was partially supported by the Direccion general de Politica Cientifica de la Generalitat Valenciana (PROMETEO/2020/043); by "Primeros Proyectos de Investigacion" (PAID06-18) from Vicerrectorado de Investigacion, ...[+]
Type: Artículo

References

Gintant, G. A. (2008). Preclinical Torsades-de-Pointes Screens: Advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacology & Therapeutics, 119(2), 199-209. doi:10.1016/j.pharmthera.2008.04.010

Vicente, J., Zusterzeel, R., Johannesen, L., Mason, J., Sager, P., Patel, V., … Strauss, D. G. (2017). Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the «CiPA» Initiative and Design of a Prospective Clinical Validation Study. Clinical Pharmacology & Therapeutics, 103(1), 54-66. doi:10.1002/cpt.896

Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y., … Stockbridge, N. (2016). The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — Update on progress. Journal of Pharmacological and Toxicological Methods, 81, 15-20. doi:10.1016/j.vascn.2016.06.002 [+]
Gintant, G. A. (2008). Preclinical Torsades-de-Pointes Screens: Advantages and limitations of surrogate and direct approaches in evaluating proarrhythmic risk. Pharmacology & Therapeutics, 119(2), 199-209. doi:10.1016/j.pharmthera.2008.04.010

Vicente, J., Zusterzeel, R., Johannesen, L., Mason, J., Sager, P., Patel, V., … Strauss, D. G. (2017). Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the «CiPA» Initiative and Design of a Prospective Clinical Validation Study. Clinical Pharmacology & Therapeutics, 103(1), 54-66. doi:10.1002/cpt.896

Colatsky, T., Fermini, B., Gintant, G., Pierson, J. B., Sager, P., Sekino, Y., … Stockbridge, N. (2016). The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative — Update on progress. Journal of Pharmacological and Toxicological Methods, 81, 15-20. doi:10.1016/j.vascn.2016.06.002

Li, Z., Ridder, B. J., Han, X., Wu, W. W., Sheng, J., Tran, P. N., … Strauss, D. G. (2018). Assessment of an In Silico Mechanistic Model for Proarrhythmia Risk Prediction Under the Ci PA Initiative. Clinical Pharmacology & Therapeutics, 105(2), 466-475. doi:10.1002/cpt.1184

Sager, P. T., Gintant, G., Turner, J. R., Pettit, S., & Stockbridge, N. (2014). Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the Cardiac Safety Research Consortium. American Heart Journal, 167(3), 292-300. doi:10.1016/j.ahj.2013.11.004

Fermini, B., Hancox, J. C., Abi-Gerges, N., Bridgland-Taylor, M., Chaudhary, K. W., Colatsky, T., … Vandenberg, J. I. (2015). A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm. Journal of Biomolecular Screening, 21(1), 1-11. doi:10.1177/1087057115594589

Mirams, G. R., Davies, M. R., Brough, S. J., Bridgland-Taylor, M. H., Cui, Y., Gavaghan, D. J., & Abi-Gerges, N. (2014). Prediction of Thorough QT study results using action potential simulations based on ion channel screens. Journal of Pharmacological and Toxicological Methods, 70(3), 246-254. doi:10.1016/j.vascn.2014.07.002

Obiol-Pardo, C., Gomis-Tena, J., Sanz, F., Saiz, J., & Pastor, M. (2011). A Multiscale Simulation System for the Prediction of Drug-Induced Cardiotoxicity. Journal of Chemical Information and Modeling, 51(2), 483-492. doi:10.1021/ci100423z

Romero, L., Cano, J., Gomis-Tena, J., Trenor, B., Sanz, F., Pastor, M., & Saiz, J. (2018). In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. Journal of Chemical Information and Modeling, 58(4), 867-878. doi:10.1021/acs.jcim.7b00440

Okada, J., Yoshinaga, T., Kurokawa, J., Washio, T., Furukawa, T., Sawada, K., … Hisada, T. (2018). Arrhythmic hazard map for a 3D whole-ventricle model under multiple ion channel block. British Journal of Pharmacology, 175(17), 3435-3452. doi:10.1111/bph.14357

Dutta, S., Chang, K. C., Beattie, K. A., Sheng, J., Tran, P. N., Wu, W. W., … Li, Z. (2017). Optimization of an In silico Cardiac Cell Model for Proarrhythmia Risk Assessment. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00616

Mirams, G. R., Cui, Y., Sher, A., Fink, M., Cooper, J., Heath, B. M., … Noble, D. (2011). Simulation of multiple ion channel block provides improved early prediction of compounds’ clinical torsadogenic risk. Cardiovascular Research, 91(1), 53-61. doi:10.1093/cvr/cvr044

Kramer, J., Obejero-Paz, C. A., Myatt, G., Kuryshev, Y. A., Bruening-Wright, A., Verducci, J. S., & Brown, A. M. (2013). MICE Models: Superior to the HERG Model in Predicting Torsade de Pointes. Scientific Reports, 3(1). doi:10.1038/srep02100

O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061

Britton, O. J., Abi-Gerges, N., Page, G., Ghetti, A., Miller, P. E., & Rodriguez, B. (2017). Quantitative Comparison of Effects of Dofetilide, Sotalol, Quinidine, and Verapamil between Human Ex vivo Trabeculae and In silico Ventricular Models Incorporating Inter-Individual Action Potential Variability. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00597

Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003

Cavero, I., Guillon, J.-M., Ballet, V., Clements, M., Gerbeau, J.-F., & Holzgrefe, H. (2016). Comprehensive in vitro Proarrhythmia Assay (C i PA): Pending issues for successful validation and implementation. Journal of Pharmacological and Toxicological Methods, 81, 21-36. doi:10.1016/j.vascn.2016.05.012

Dutta, S.; Strauss, D.; Colatsky, T.; Li, Z. In Optimization of an In Silico Cardiac Cell Model for Proarrhythmia Risk Assessment, 2016 Computing in Cardiology Conference (CinC); 2016; pp 869–872.

Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739

Parikh, J., Gurev, V., & Rice, J. J. (2017). Novel Two-Step Classifier for Torsades de Pointes Risk Stratification from Direct Features. Frontiers in Pharmacology, 8. doi:10.3389/fphar.2017.00816

Woosley, R.; Romero, K.; Heise, W. Risk Categories for Drugs that Prolong QT & Induce Torsade de Pointes (TdP); AZCERT, Inc.: Oro Valley, AZ, 2019. https://www.crediblemeds.org/ (accessed March 9, 2020).

Parikh, J., Di Achille, P., Kozloski, J., & Gurev, V. (2019). Global Sensitivity Analysis of Ventricular Myocyte Model-Derived Metrics for Proarrhythmic Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01054

Varró, A., & Baczkó, I. (2011). Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. British Journal of Pharmacology, 164(1), 14-36. doi:10.1111/j.1476-5381.2011.01367.x

Antzelevitch, C. (2007). Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace, 9(Supplement 4), iv4-iv15. doi:10.1093/europace/eum166

Viswanathan, P. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular Research, 42(2), 530-542. doi:10.1016/s0008-6363(99)00035-8

Britton, O. J., Bueno-Orovio, A., Van Ammel, K., Lu, H. R., Towart, R., Gallacher, D. J., & Rodriguez, B. (2013). Experimentally calibrated population of models predicts and explains intersubject variability in cardiac cellular electrophysiology. Proceedings of the National Academy of Sciences, 110(23), E2098-E2105. doi:10.1073/pnas.1304382110

Sobie, E. A. (2009). Parameter Sensitivity Analysis in Electrophysiological Models Using Multivariable Regression. Biophysical Journal, 96(4), 1264-1274. doi:10.1016/j.bpj.2008.10.056

Hoffmann, P., & Warner, B. (2006). Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. Journal of Pharmacological and Toxicological Methods, 53(2), 87-105. doi:10.1016/j.vascn.2005.07.003

CANTILENAJR, L., KOERNER, J., TEMPLE, R., & THROCKMORTON, D. (2006). OIII-A-1FDA evaluation of cardiac repolarization data for 19 drugs and drug candidates. Clinical Pharmacology & Therapeutics, 79(2), P29-P29. doi:10.1016/j.clpt.2005.12.106

REDFERN, W., CARLSSON, L., DAVIS, A., LYNCH, W., MACKENZIE, I., PALETHORPE, S., … WALLIS, R. (2003). Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovascular Research, 58(1), 32-45. doi:10.1016/s0008-6363(02)00846-5

Tomek, J., Bueno-Orovio, A., Passini, E., Zhou, X., Minchole, A., Britton, O., … Rodriguez, B. (2019). Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife, 8. doi:10.7554/elife.48890

Passini, E., Trovato, C., Morissette, P., Sannajust, F., Bueno‐Orovio, A., & Rodriguez, B. (2019). Drug‐induced shortening of the electromechanical window is an effective biomarker for in silico prediction of clinical risk of arrhythmias. British Journal of Pharmacology, 176(19), 3819-3833. doi:10.1111/bph.14786

Zhou, X., Qu, Y., Passini, E., Bueno-Orovio, A., Liu, Y., Vargas, H. M., & Rodriguez, B. (2020). Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.01643

Lawrence, C. L., Bridgland-Taylor, M. H., Pollard, C. E., Hammond, T. G., & Valentin, J.-P. (2006). A Rabbit Langendorff Heart Proarrhythmia Model: Predictive Value for Clinical Identification of Torsades de Pointes. British Journal of Pharmacology, 149(7), 845-860. doi:10.1038/sj.bjp.0706894

Ando, H., Yoshinaga, T., Yamamoto, W., Asakura, K., Uda, T., Taniguchi, T., … Sekino, Y. (2017). A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes. Journal of Pharmacological and Toxicological Methods, 84, 111-127. doi:10.1016/j.vascn.2016.12.003

Cubeddu, L. (2016). Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias. Current Cardiology Reviews, 12(2), 141-154. doi:10.2174/1573403x12666160301120217

Nogawa, H., & Kawai, T. (2014). hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia. European Journal of Pharmacology, 741, 336-339. doi:10.1016/j.ejphar.2014.06.044

Kanlop, N., Chattipakorn, S., & Chattipakorn, N. (2011). Effects of cilostazol in the heart. Journal of Cardiovascular Medicine, 12(2), 88-95. doi:10.2459/jcm.0b013e3283439746

Morosin, M., Dametto, E., Bianco, F. D., Brieda, M., & Nicolosi, G. L. (2017). An unusual etiology of torsade de pointes-induced syncope. Archives of Medical Science, 3, 686-688. doi:10.5114/aoms.2017.67287

Nia, A. M., Dahlem, K. M., Gassanov, N., Hungerbühler, H., Fuhr, U., & Er, F. (2011). Clinical impact of fluvoxamine-mediated long QTU syndrome. European Journal of Clinical Pharmacology, 68(1), 109-111. doi:10.1007/s00228-011-1091-7

HII, J. T. Y., WYSE, D. G., GILLIS, A. M., COHEN, J. M., & MITCHELL, L. B. (1991). Propafenone-Induced Torsade de Pointes: Cross-Reactivity with Quinidine. Pacing and Clinical Electrophysiology, 14(11), 1568-1570. doi:10.1111/j.1540-8159.1991.tb02729.x

Wenzel-Seifert, K., Wittmann, M., & Haen, E. (2011). QTc Prolongation by Psychotropic Drugs and the Risk of Torsade de Pointes. Deutsches Aerzteblatt Online. doi:10.3238/arztebl.2011.0687

Beattie, K. A., Luscombe, C., Williams, G., Munoz-Muriedas, J., Gavaghan, D. J., Cui, Y., & Mirams, G. R. (2013). Evaluation of an in silico cardiac safety assay: Using ion channel screening data to predict QT interval changes in the rabbit ventricular wedge. Journal of Pharmacological and Toxicological Methods, 68(1), 88-96. doi:10.1016/j.vascn.2013.04.004

Romero, L., Carbonell, B., Trenor, B., Rodríguez, B., Saiz, J., & Ferrero, J. M. (2011). Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. Progress in Biophysics and Molecular Biology, 107(1), 60-73. doi:10.1016/j.pbiomolbio.2011.06.012

Zicha, S., Moss, I., Allen, B., Varro, A., Papp, J., Dumaine, R., … Nattel, S. (2003). Molecular basis of species-specific expression of repolarizing K+ currents in the heart. American Journal of Physiology-Heart and Circulatory Physiology, 285(4), H1641-H1649. doi:10.1152/ajpheart.00346.2003

Li, Z., Dutta, S., Sheng, J., Tran, P. N., Wu, W., Chang, K., … Colatsky, T. (2017). Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel–Drug Binding Kinetics and Multichannel Pharmacology. Circulation: Arrhythmia and Electrophysiology, 10(2). doi:10.1161/circep.116.004628

Sahli Costabal, F., Matsuno, K., Yao, J., Perdikaris, P., & Kuhl, E. (2019). Machine learning in drug development: Characterizing the effect of 30 drugs on the QT interval using Gaussian process regression, sensitivity analysis, and uncertainty quantification. Computer Methods in Applied Mechanics and Engineering, 348, 313-333. doi:10.1016/j.cma.2019.01.033

Lacerda, A. E., Kuryshev, Y. A., Chen, Y., Renganathan, M., Eng, H., Danthi, S. J., … Brown, A. M. (2007). Alfuzosin Delays Cardiac Repolarization by a Novel Mechanism. Journal of Pharmacology and Experimental Therapeutics, 324(2), 427-433. doi:10.1124/jpet.107.128405

Yang, T., Chun, Y. W., Stroud, D. M., Mosley, J. D., Knollmann, B. C., Hong, C., & Roden, D. M. (2014). Screening for Acute I Kr Block Is Insufficient to Detect Torsades de Pointes Liability. Circulation, 130(3), 224-234. doi:10.1161/circulationaha.113.007765

Crumb, W. J., Vicente, J., Johannesen, L., & Strauss, D. G. (2016). An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel. Journal of Pharmacological and Toxicological Methods, 81, 251-262. doi:10.1016/j.vascn.2016.03.009

Polak, S., Wiśniowska, B., & Brandys, J. (2009). Collation, assessment and analysis of literaturein vitrodata on hERG receptor blocking potency for subsequent modeling of drugs’ cardiotoxic properties. Journal of Applied Toxicology, 29(3), 183-206. doi:10.1002/jat.1395

Gomis-Tena, J., Brown, B. M., Cano, J., Trenor, B., Yang, P.-C., Saiz, J., … Romero, L. (2020). When Does the IC50 Accurately Assess the Blocking Potency of a Drug? Journal of Chemical Information and Modeling, 60(3), 1779-1790. doi:10.1021/acs.jcim.9b01085

Li, Z., Mirams, G. R., Yoshinaga, T., Ridder, B. J., Han, X., Chen, J. E., … Strauss, D. G. (2019). General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy. Clinical Pharmacology & Therapeutics, 107(1), 102-111. doi:10.1002/cpt.1647

Romero, L., Trenor, B., Yang, P.-C., Saiz, J., & Clancy, C. E. (2015). In silico screening of the impact of hERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. Journal of Molecular and Cellular Cardiology, 87, 271-282. doi:10.1016/j.yjmcc.2015.08.015

Milnes, J. T., Witchel, H. J., Leaney, J. L., Leishman, D. J., & Hancox, J. C. (2010). Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37°C: Cisapride versus dofetilide. Journal of Pharmacological and Toxicological Methods, 61(2), 178-191. doi:10.1016/j.vascn.2010.02.007

DI VEROLI, G. Y., DAVIES, M. R., ZHANG, H., ABI-GERGES, N., & BOYETT, M. R. (2013). hERG Inhibitors with Similar Potency But Different Binding Kinetics Do Not Pose the Same Proarrhythmic Risk: Implications for Drug Safety Assessment. Journal of Cardiovascular Electrophysiology, 25(2), 197-207. doi:10.1111/jce.12289

Brown, C. S., Farmer, R. G., Soberman, J. E., & Eichner, S. F. (2004). Pharmacokinetic Factors in the Adverse Cardiovascular Effects of Antipsychotic Drugs. Clinical Pharmacokinetics, 43(1), 33-56. doi:10.2165/00003088-200443010-00003

Van Noord, C., Dieleman, J. P., van Herpen, G., Verhamme, K., & Sturkenboom, M. C. J. M. (2010). Domperidone and Ventricular Arrhythmia or Sudden Cardiac Death. Drug Safety, 33(11), 1003-1014. doi:10.2165/11536840-000000000-00000

Wiśniowska, B., & Polak, S. (2017). Am I or am I not proarrhythmic? Comparison of various classifications of drug TdP propensity. Drug Discovery Today, 22(1), 10-16. doi:10.1016/j.drudis.2016.09.027

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record