Mellnik, A. R., Lee, J. S., Richardella, A., Grab, J. L., Mintun, P. J., Fischer, M. H., … Ralph, D. C. (2014). Spin-transfer torque generated by a topological insulator. Nature, 511(7510), 449-451. doi:10.1038/nature13534
Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi
2
Te
3. Science, 325(5937), 178-181. doi:10.1126/science.1173034
Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234
[+]
Mellnik, A. R., Lee, J. S., Richardella, A., Grab, J. L., Mintun, P. J., Fischer, M. H., … Ralph, D. C. (2014). Spin-transfer torque generated by a topological insulator. Nature, 511(7510), 449-451. doi:10.1038/nature13534
Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi
2
Te
3. Science, 325(5937), 178-181. doi:10.1126/science.1173034
Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234
Zhang, T., Jiang, Y., Song, Z., Huang, H., He, Y., Fang, Z., … Fang, C. (2019). Catalogue of topological electronic materials. Nature, 566(7745), 475-479. doi:10.1038/s41586-019-0944-6
Vergniory, M. G., Elcoro, L., Felser, C., Regnault, N., Bernevig, B. A., & Wang, Z. (2019). A complete catalogue of high-quality topological materials. Nature, 566(7745), 480-485. doi:10.1038/s41586-019-0954-4
Tang, F., Po, H. C., Vishwanath, A., & Wan, X. (2019). Comprehensive search for topological materials using symmetry indicators. Nature, 566(7745), 486-489. doi:10.1038/s41586-019-0937-5
Zunger, A. (2019). Beware of plausible predictions of fantasy materials. Nature, 566(7745), 447-449. doi:10.1038/d41586-019-00676-y
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274
Taherinejad, M., Garrity, K. F., & Vanderbilt, D. (2014). Wannier center sheets in topological insulators. Physical Review B, 89(11). doi:10.1103/physrevb.89.115102
Niesner, D., Otto, S., Hermann, V., Fauster, T., Menshchikova, T. V., Eremeev, S. V., … Chulkov, E. V. (2014). Bulk and surface electron dynamics in ap-type topological insulatorSnSb2Te4. Physical Review B, 89(8). doi:10.1103/physrevb.89.081404
Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012
Eremeev, S. V., Koroteev, Y. M., & Chulkov, E. V. (2010). Effect of the atomic composition of the surface on the electron surface states in topological insulators A 2 V B 3 VI. JETP Letters, 91(8), 387-391. doi:10.1134/s0021364010080059
Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2011). On the origin of two-dimensional electron gas states at the surface of topological insulators. JETP Letters, 94(2), 106-111. doi:10.1134/s0021364011140104
Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2013). Electronic structure of SnSb2Te4 and PbSb2Te4 topological insulators. Applied Surface Science, 267, 1-3. doi:10.1016/j.apsusc.2012.04.048
Concas, G., de Pascale, T. M., Garbato, L., Ledda, F., Meloni, F., Rucci, A., & Serra, M. (1992). Electronic and structural properties of the layered SnSb2Te4 semiconductor: Ab initio total-energy and Mössbauer spectroscopy study. Journal of Physics and Chemistry of Solids, 53(6), 791-796. doi:10.1016/0022-3697(92)90191-f
Eremeev, S. V., Menshchikova, T. V., Silkin, I. V., Vergniory, M. G., Echenique, P. M., & Chulkov, E. V. (2015). Sublattice effect on topological surface states in complex(SnTe)n>1(Bi2Te3)m=1compounds. Physical Review B, 91(24). doi:10.1103/physrevb.91.245145
Kuznetsov, A. Y., Pereira, A. S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., … Guignot, N. (2006). Pressure-Induced Chemical Decomposition and Structural Changes of Boric Acid. The Journal of Physical Chemistry B, 110(28), 13858-13865. doi:10.1021/jp061650d
Shelimova, L. E., Karpinskii, O. G., Konstantinov, P. P., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2004). Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) Systems. Inorganic Materials, 40(5), 451-460. doi:10.1023/b:inma.0000027590.43038.a8
Kuropatwa, B. A., Assoud, A., & Kleinke, H. (2013). Effects of Cation Site Substitutions on the Thermoelectric Performance of Layered SnBi2Te4utilizing the Triel Elements Ga, In, and Tl. Zeitschrift für anorganische und allgemeine Chemie, 639(14), 2411-2420. doi:10.1002/zaac.201300325
Kuropatwa, B. A., & Kleinke, H. (2012). Thermoelectric Properties of Stoichiometric Compounds in the (SnTe)x(Bi2Te3)ySystem. Zeitschrift für anorganische und allgemeine Chemie, 638(15), 2640-2647. doi:10.1002/zaac.201200284
Banik, A., & Biswas, K. (2017). Synthetic Nanosheets of Natural van der Waals Heterostructures. Angewandte Chemie International Edition, 56(46), 14561-14566. doi:10.1002/anie.201708293
Shelimova, L. E., Karpinskii, O. G., Svechnikova, T. E., Nikhezina, I. Y., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2008). Effect of cadmium, silver, and tellurium doping on the properties of single crystals of the layered compounds PbBi4Te7 and PbSb2Te4. Inorganic Materials, 44(4), 371-376. doi:10.1134/s0020168508040080
Shu, H. W., Jaulmes, S., & Flahaut, J. (1988). Syste`me AsGeTe. Journal of Solid State Chemistry, 74(2), 277-286. doi:10.1016/0022-4596(88)90356-8
Adouby, K., Abba Touré, A., Kra, G., Olivier-Fourcade, J., Jumas, J.-C., & Perez Vicente, C. (2000). Phase diagram and local environment of Sn and Te: SnTe Bi and SnTe Bi 2 Te 3 systems. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry, 3(1), 51-58. doi:10.1016/s1387-1609(00)00105-5
Oeckler, O., Schneider, M. N., Fahrnbauer, F., & Vaughan, G. (2011). Atom distribution in SnSb2Te4 by resonant X-ray diffraction. Solid State Sciences, 13(5), 1157-1161. doi:10.1016/j.solidstatesciences.2010.12.043
Schäfer, T., Konze, P. M., Huyeng, J. D., Deringer, V. L., Lesieur, T., Müller, P., … Wuttig, M. (2017). Chemical Tuning of Carrier Type and Concentration in a Homologous Series of Crystalline Chalcogenides. Chemistry of Materials, 29(16), 6749-6757. doi:10.1021/acs.chemmater.7b01595
Gallus, J. Lattice Dynamics in the SnSb2Te4 Phase Change Material. Diplomarbeit; Rheinisch-Westfälischen Technischen Hochschule Aachen: 2011.
Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777
Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280
Yu, Y., Cagnoni, M., Cojocaru‐Mirédin, O., & Wuttig, M. (2019). Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 30(8), 1904862. doi:10.1002/adfm.201904862
Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V
2
VI
3
or Pn
2
Ch
3
(Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316
Kooi, B. J., & Wuttig, M. (2020). Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. Advanced Materials, 32(21), 1908302. doi:10.1002/adma.201908302
Hsieh, W.-P., Zalden, P., Wuttig, M., Lindenberg, A. M., & Mao, W. L. (2013). High-pressure Raman spectroscopy of phase change materials. Applied Physics Letters, 103(19), 191908. doi:10.1063/1.4829358
Vilaplana, R., Sans, J. A., Manjón, F. J., Andrada-Chacón, A., Sánchez-Benítez, J., Popescu, C., … Oeckler, O. (2016). Structural and electrical study of the topological insulator SnBi2Te4 at high pressure. Journal of Alloys and Compounds, 685, 962-970. doi:10.1016/j.jallcom.2016.06.170
Song, P., Matsumoto, R., Hou, Z., Adachi, S., Hara, H., Saito, Y., … Takano, Y. (2020). Pressure-induced superconductivity in SnSb2Te4. Journal of Physics: Condensed Matter, 32(23), 235901. doi:10.1088/1361-648x/ab76e2
Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900
Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408
Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242
Larson, A. C.; Von Dreele, R. B.General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748; 1994.
Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413
Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057
Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673
Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640
Debernardi, A., Ulrich, C., Cardona, M., & Syassen, K. (2001). Pressure Dependence of Raman Linewidth in Semiconductors. physica status solidi (b), 223(1), 213-223. doi:10.1002/1521-3951(200101)223:1<213::aid-pssb213>3.0.co;2-i
Garcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747
Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864
Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953
Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406
Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863
Parlinski, K. see: http://www.computingformaterials.com/index.html. March 2020.
Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21(8), 084204. doi:10.1088/0953-8984/21/8/084204
Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899-908. doi:10.1002/jcc.20575
Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360. doi:10.1016/j.commatsci.2005.04.010
Yu, M., & Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111. doi:10.1063/1.3553716
http://theory.cm.utexas.edu/henkelman/code/bader/. March 2019.
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498-6506. doi:10.1021/ja100936w
Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. Journal of Chemical Theory and Computation, 7(3), 625-632. doi:10.1021/ct100641a
Angel, R. J., Alvaro, M., & Gonzalez-Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie - Crystalline Materials, 229(5), 405-419. doi:10.1515/zkri-2013-1711
Zhou, D., Li, Q., Ma, Y., Cui, Q., & Chen, C. (2013). Unraveling Convoluted Structural Transitions in SnTe at High Pressure. The Journal of Physical Chemistry C, 117(10), 5352-5357. doi:10.1021/jp4008762
Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305
Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9
Wang, B.-T., Souvatzis, P., Eriksson, O., & Zhang, P. (2015). Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations. The Journal of Chemical Physics, 142(17), 174702. doi:10.1063/1.4919683
Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j
Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049
Robinson, K., Gibbs, G. V., & Ribbe, P. H. (1971). Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. Science, 172(3983), 567-570. doi:10.1126/science.172.3983.567
Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560
Walsh, A., & Watson, G. W. (2005). Influence of the Anion on Lone Pair Formation in Sn(II) Monochalcogenides: A DFT Study. The Journal of Physical Chemistry B, 109(40), 18868-18875. doi:10.1021/jp051822r
Skowron, A., Boswell, F. W., Corbett, J. M., & Taylor, N. J. (1994). Structure Determination of PbSb2Se4. Journal of Solid State Chemistry, 112(2), 251-254. doi:10.1006/jssc.1994.1300
Smith, P. P. K., & Parise, J. B. (1985). Structure determination of SnSb2S4 and SnSb2Se4 by high-resolution electron microscopy. Acta Crystallographica Section B Structural Science, 41(2), 84-87. doi:10.1107/s0108768185001665
Iitaka, Y., & Nowacki, W. (1962). A redetermination of the crystal structure of galenobismutite, PbBi2S4. Acta Crystallographica, 15(7), 691-698. doi:10.1107/s0365110x62001887
Gaspard, J.-P., & Ceolin, R. (1992). Hume-Rothery rule in V–VI compounds. Solid State Communications, 84(8), 839-842. doi:10.1016/0038-1098(92)90102-f
Gaspard, J.-P., Pellegatti, A., Marinelli, F., & Bichara, C. (1998). Peierls instabilities in covalent structures I. Electronic structure, cohesion and theZ= 8 –Nrule. Philosophical Magazine B, 77(3), 727-744. doi:10.1080/13642819808214831
Seo, D.-K., & Hoffmann, R. (1999). What Determines the Structures of the Group 15 Elements? Journal of Solid State Chemistry, 147(1), 26-37. doi:10.1006/jssc.1999.8140
Zhang, H., Liu, C.-X., & Zhang, S.-C. (2013). Spin-Orbital Texture in Topological Insulators. Physical Review Letters, 111(6). doi:10.1103/physrevlett.111.066801
Tamtögl, A., Kraus, P., Mayrhofer-Reinhartshuber, M., Benedek, G., Bernasconi, M., Dragoni, D., … Ernst, W. E. (2019). Statics and dynamics of multivalley charge density waves in Sb(111). npj Quantum Materials, 4(1). doi:10.1038/s41535-019-0168-x
Li, Y.; Parsons, C.; Ramakrishna, S.; Dwivedi, A.; Schofield, M.; Reyes, A.; Guptasarma, P. Charge Density Wave Order in the Topological Insulator Bi2Se3. arXiv: 2002.12546.
Boulfelfel, S. E., Seifert, G., Grin, Y., & Leoni, S. (2012). Squeezing lone pairs: TheA17 toA7 pressure-induced phase transition in black phosphorus. Physical Review B, 85(1). doi:10.1103/physrevb.85.014110
Zhang, X., Stevanović, V., d’ Avezac, M., Lany, S., & Zunger, A. (2012). Prediction ofA2BX4metal-chalcogenide compounds via first-principles thermodynamics. Physical Review B, 86(1). doi:10.1103/physrevb.86.014109
Zunger, A. (1980). Systematization of the stable crystal structure of allAB-type binary compounds: A pseudopotential orbital-radii approach. Physical Review B, 22(12), 5839-5872. doi:10.1103/physrevb.22.5839
Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672
Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., … Uruga, T. (2006). Pressure-Induced Site-Selective Disordering ofGe2Sb2Te5: A New Insight into Phase-Change Optical Recording. Physical Review Letters, 97(3). doi:10.1103/physrevlett.97.035701
Arora, A. . (2000). Pressure-induced amorphization versus decomposition. Solid State Communications, 115(12), 665-668. doi:10.1016/s0038-1098(00)00253-2
Bassett, W. A., & Li-Chung Ming. (1972). Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250kbar and temperatures up to 3000 °C. Physics of the Earth and Planetary Interiors, 6(1-3), 154-160. doi:10.1016/0031-9201(72)90048-9
Fei, Y., & Mao, H.-K. (1993). Static compression of Mg(OH)2to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. Journal of Geophysical Research: Solid Earth, 98(B7), 11875-11884. doi:10.1029/93jb00701
Catafesta, J., Rovani, P. R., Perottoni, C. A., & Pereira, A. S. (2015). Pressure-enhanced decomposition of Ag3[Co(CN)6]. Journal of Physics and Chemistry of Solids, 77, 151-156. doi:10.1016/j.jpcs.2014.10.006
Duan, D., Huang, X., Tian, F., Li, D., Yu, H., Liu, Y., … Cui, T. (2015). Pressure-induced decomposition of solid hydrogen sulfide. Physical Review B, 91(18). doi:10.1103/physrevb.91.180502
Zhu, J., Zhang, J. L., Kong, P. P., Zhang, S. J., Yu, X. H., Zhu, J. L., … Jin, C. Q. (2013). Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. Scientific Reports, 3(1). doi:10.1038/srep02016
Zhao, L., Deng, H., Korzhovska, I., Begliarbekov, M., Chen, Z., Andrade, E., … Krusin-Elbaum, L. (2015). Emergent surface superconductivity in the topological insulator Sb2Te3. Nature Communications, 6(1). doi:10.1038/ncomms9279
Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110
Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411
Marini, C., Chermisi, D., Lavagnini, M., Di Castro, D., Petrillo, C., Degiorgi, L., … Postorino, P. (2012). High-pressure phases of crystalline tellurium: A combined Raman andab initiostudy. Physical Review B, 86(6). doi:10.1103/physrevb.86.064103
Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4 at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493r
Ribeiro, G. A. S., Paulatto, L., Bianco, R., Errea, I., Mauri, F., & Calandra, M. (2018). Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles. Physical Review B, 97(1). doi:10.1103/physrevb.97.014306
Pellicer-Porres, J., Segura, A., Ferrer-Roca, C., Sans, J. A., & Dumas, P. (2013). Investigation of lattice dynamical and dielectric properties of MgO under high pressure by means of mid- and far-infrared spectroscopy. Journal of Physics: Condensed Matter, 25(50), 505902. doi:10.1088/0953-8984/25/50/505902
Wang, C.-H., Jing, X.-P., Feng, W., & Lu, J. (2008). Assignment of Raman-active vibrational modes of MgTiO3. Journal of Applied Physics, 104(3), 034112. doi:10.1063/1.2966717
Zhao, K., Wang, Y., Sui, Y., Xin, C., Wang, X., Wang, Y., … Li, B. (2015). First principles study of isostructural phase transition in Sb2Te3under high pressure. physica status solidi (RRL) - Rapid Research Letters, 9(6), 379-383. doi:10.1002/pssr.201510091
Cardona, M., & Thewalt, M. L. W. (2005). Isotope effects on the optical spectra of semiconductors. Reviews of Modern Physics, 77(4), 1173-1224. doi:10.1103/revmodphys.77.1173
Manj�n, F. J., Serrano, J., Loa, I., Syassen, K., Lin, C. T., & Cardona, M. (2001). Effect of Pressure on the Anomalous Raman Spectrum of CuBr. physica status solidi (b), 223(1), 331-336. doi:10.1002/1521-3951(200101)223:1<331::aid-pssb331>3.0.co;2-e
Krauzman, M., Pick, R. M., Poulet, H., Hamel, G., & Prevot, B. (1974). Raman Detection of One-Phonon—Two-Phonon Interactions in CuCl. Physical Review Letters, 33(9), 528-530. doi:10.1103/physrevlett.33.528
Kanellis, G., Kress, W., & Bilz, H. (1986). Fermi Resonance in the Phonon Spectra of Copper Halides. Physical Review Letters, 56(9), 938-940. doi:10.1103/physrevlett.56.938
Agranovich, V. M. Spectroscopy and Excitation Dynamics of Condensed Moiecular Systems; North-Holland: Amsterdam, 1983; p 83.
Singh, R. K., & Gupta, D. C. (1989). Phase transition and high-pressure elastic behavior of copper halides. Physical Review B, 40(16), 11278-11283. doi:10.1103/physrevb.40.11278
Gopakumar, A. M., Gupta, M. K., Mittal, R., Rols, S., & Chaplot, S. L. (2017). Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations. Physical Chemistry Chemical Physics, 19(19), 12107-12116. doi:10.1039/c7cp01517h
Hakeem, M. A., Jackson, D. E., Hamlin, J. J., Errandonea, D., Proctor, J. E., & Bettinelli, M. (2018). High Pressure Raman, Optical Absorption, and Resistivity Study of SrCrO4. Inorganic Chemistry, 57(13), 7550-7557. doi:10.1021/acs.inorgchem.8b00268
Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203
Reindl, J., Volker, H., Breznay, N. P., & Wuttig, M. (2019). Persistence of spin memory in a crystalline, insulating phase-change material. npj Quantum Materials, 4(1). doi:10.1038/s41535-019-0196-6
Segura, A., Panchal, V., Sánchez-Royo, J. F., Marín-Borrás, V., Muñoz-Sanjosé, V., Rodríguez-Hernández, P., … González, J. (2012). Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3under high pressure. Physical Review B, 85(19). doi:10.1103/physrevb.85.195139
Mio, A. M., Konze, P. M., Meledin, A., Küpers, M., Pohlmann, M., Kaminski, M., … Wuttig, M. (2019). Impact of Bonding on the Stacking Defects in Layered Chalcogenides. Advanced Functional Materials, 29(37), 1902332. doi:10.1002/adfm.201902332
Noury, S., Silvi, B., & Gillespie, R. J. (2002). Chemical Bonding in Hypervalent Molecules: Is the Octet Rule Relevant? Inorganic Chemistry, 41(8), 2164-2172. doi:10.1021/ic011003v
Scheiner, S., & Lu, J. (2018). Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. Chemistry - A European Journal, 24(32), 8167-8177. doi:10.1002/chem.201800511
Durrant, M. C. (2015). A quantitative definition of hypervalency. Chemical Science, 6(11), 6614-6623. doi:10.1039/c5sc02076j
Braïda, B., & Hiberty, P. C. (2013). The essential role of charge-shift bonding in hypervalent prototype XeF2. Nature Chemistry, 5(5), 417-422. doi:10.1038/nchem.1619
Lee, T. H.; Elliott, S. R. Chemical bonding in chalcogenides: the concept of multi-centre hyperbonding. arXiv 1909.05281.
Shaik, S., Danovich, D., Galbraith, J. M., Braïda, B., Wu, W., & Hiberty, P. C. (2019). Charge‐Shift Bonding: A New and Unique Form of Bonding. Angewandte Chemie International Edition, 59(3), 984-1001. doi:10.1002/anie.201910085
Berski, S., & Durlak, P. (2017). Dimeric nature of N-coordinated Mg and Ca ions in metaloorganic compounds. The topological analysis of ELF functions for Mg–Mg and Ca–Ca bonds. Polyhedron, 129, 22-29. doi:10.1016/j.poly.2017.03.024
Gatti, C. (2005). Chemical bonding in crystals: new directions. Zeitschrift für Kristallographie - Crystalline Materials, 220(5-6), 399-457. doi:10.1524/zkri.220.5.399.65073
Sa, B., Miao, N., Zhou, J., Sun, Z., & Ahuja, R. (2010). Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6. Physical Chemistry Chemical Physics, 12(7), 1585. doi:10.1039/b920990e
Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110
Xu, M., Jakobs, S., Mazzarello, R., Cho, J.-Y., Yang, Z., Hollermann, H., … Wuttig, M. (2017). Impact of Pressure on the Resonant Bonding in Chalcogenides. The Journal of Physical Chemistry C, 121(45), 25447-25454. doi:10.1021/acs.jpcc.7b07546
Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica, A., Radescu, S., Muñoz, A., … Manjón, F. J. (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics, 22(6), 3352-3369. doi:10.1039/c9cp06298j
Matsunaga, T., & Yamada, N. (2004). Structural investigation ofGeSb2Te4: A high-speed phase-change material. Physical Review B, 69(10). doi:10.1103/physrevb.69.104111
Selivanov, E. N., Gulyaeva, R. I., & Vershinin, A. D. (2008). Thermal expansion and phase transformations of natural pyrrhotite. Inorganic Materials, 44(4), 438-442. doi:10.1134/s0020168508040201
[-]