- -

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression

Show simple item record

Files in this item

dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Vilaplana Cerda, Rosario Isabel es_ES
dc.contributor.author Da Silva, E. Lora es_ES
dc.contributor.author Popescu, Catalin es_ES
dc.contributor.author Cuenca-Gotor, Vanesa Paula es_ES
dc.contributor.author Andrada-Chacón, Adrián es_ES
dc.contributor.author Sánchez-Benitez, Javier es_ES
dc.contributor.author Gomis, O. es_ES
dc.contributor.author Pereira, André L. J. es_ES
dc.contributor.author Rodríguez-Hernández, Plácida es_ES
dc.contributor.author Muñoz, Alfonso es_ES
dc.contributor.author Daisenberger, Dominik es_ES
dc.contributor.author García-Domene, Braulio es_ES
dc.contributor.author Segura, Alfredo es_ES
dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Manjón, Francisco-Javier es_ES
dc.date.accessioned 2021-02-19T04:33:09Z
dc.date.available 2021-02-19T04:33:09Z
dc.date.issued 2020-07-20 es_ES
dc.identifier.issn 0020-1669 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161835
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.inorgchem.0c01086. es_ES
dc.description.abstract [EN] High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (alpha-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA(2)Te(4) compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry. es_ES
dc.description.sponsorship This work has been performed under financial support from the Spanish MINECO under Project MALTA-CONSOLIDER TEAM network (RED2018-102612-T) and Project FIS2017-83295-P, from Generalitat Valenciana under Project PROMETEO/2018/123. This publication is a product of the "Programa de Valoracion y Recursos Conjuntos de I+D+i VLC/CAMPUS and has been financed by the Spanish Ministerio de Educacion, Cultura y Deporte, as part of "Programa Campus de Excelencia Internacional". Supercomputer time has been provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges a "Ramon y Cajal" fellowship (RYC-2015-17482) for financial support, and E.L.D.S. acknowledges Marie Sklodowska-Curie Grant No. 785789-COMEX from the European Union's Horizon 2020 research and innovation program. We also thank ALBA synchrotron and DIAMOND light source for funded experiments. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject SnSb2Te4 es_ES
dc.subject Van der Waals es_ES
dc.subject Deformation es_ES
dc.subject Chemical structure es_ES
dc.subject Compression es_ES
dc.subject Compressibility es_ES
dc.subject Cations es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.inorgchem.0c01086 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/785789/EU/COmputational Modelling for EXtreme conditions/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Sans-Tresserras, JÁ.; Vilaplana Cerda, RI.; Da Silva, EL.; Popescu, C.; Cuenca-Gotor, VP.; Andrada-Chacón, A.; Sánchez-Benitez, J.... (2020). Characterization and Decomposition of the Natural van der Waals SnSb2Te4 under Compression. Inorganic Chemistry. 59(14):9900-9918. https://doi.org/10.1021/acs.inorgchem.0c01086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.inorgchem.0c01086 es_ES
dc.description.upvformatpinicio 9900 es_ES
dc.description.upvformatpfin 9918 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 59 es_ES
dc.description.issue 14 es_ES
dc.identifier.pmid 32640163 es_ES
dc.relation.pasarela S\416900 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Mellnik, A. R., Lee, J. S., Richardella, A., Grab, J. L., Mintun, P. J., Fischer, M. H., … Ralph, D. C. (2014). Spin-transfer torque generated by a topological insulator. Nature, 511(7510), 449-451. doi:10.1038/nature13534 es_ES
dc.description.references Chen, Y. L., Analytis, J. G., Chu, J.-H., Liu, Z. K., Mo, S.-K., Qi, X. L., … Shen, Z.-X. (2009). Experimental Realization of a Three-Dimensional Topological Insulator, Bi 2 Te 3. Science, 325(5937), 178-181. doi:10.1126/science.1173034 es_ES
dc.description.references Hsieh, D., Xia, Y., Qian, D., Wray, L., Dil, J. H., Meier, F., … Hasan, M. Z. (2009). A tunable topological insulator in the spin helical Dirac transport regime. Nature, 460(7259), 1101-1105. doi:10.1038/nature08234 es_ES
dc.description.references Zhang, T., Jiang, Y., Song, Z., Huang, H., He, Y., Fang, Z., … Fang, C. (2019). Catalogue of topological electronic materials. Nature, 566(7745), 475-479. doi:10.1038/s41586-019-0944-6 es_ES
dc.description.references Vergniory, M. G., Elcoro, L., Felser, C., Regnault, N., Bernevig, B. A., & Wang, Z. (2019). A complete catalogue of high-quality topological materials. Nature, 566(7745), 480-485. doi:10.1038/s41586-019-0954-4 es_ES
dc.description.references Tang, F., Po, H. C., Vishwanath, A., & Wan, X. (2019). Comprehensive search for topological materials using symmetry indicators. Nature, 566(7745), 486-489. doi:10.1038/s41586-019-0937-5 es_ES
dc.description.references Zunger, A. (2019). Beware of plausible predictions of fantasy materials. Nature, 566(7745), 447-449. doi:10.1038/d41586-019-00676-y es_ES
dc.description.references Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., & Zhang, S.-C. (2009). Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 5(6), 438-442. doi:10.1038/nphys1270 es_ES
dc.description.references Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., … Hasan, M. Z. (2009). Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Physics, 5(6), 398-402. doi:10.1038/nphys1274 es_ES
dc.description.references Taherinejad, M., Garrity, K. F., & Vanderbilt, D. (2014). Wannier center sheets in topological insulators. Physical Review B, 89(11). doi:10.1103/physrevb.89.115102 es_ES
dc.description.references Niesner, D., Otto, S., Hermann, V., Fauster, T., Menshchikova, T. V., Eremeev, S. V., … Chulkov, E. V. (2014). Bulk and surface electron dynamics in ap-type topological insulatorSnSb2Te4. Physical Review B, 89(8). doi:10.1103/physrevb.89.081404 es_ES
dc.description.references Venkatasubramanian, R., Siivola, E., Colpitts, T., & O’Quinn, B. (2001). Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413(6856), 597-602. doi:10.1038/35098012 es_ES
dc.description.references Eremeev, S. V., Koroteev, Y. M., & Chulkov, E. V. (2010). Effect of the atomic composition of the surface on the electron surface states in topological insulators A 2 V B 3 VI. JETP Letters, 91(8), 387-391. doi:10.1134/s0021364010080059 es_ES
dc.description.references Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2011). On the origin of two-dimensional electron gas states at the surface of topological insulators. JETP Letters, 94(2), 106-111. doi:10.1134/s0021364011140104 es_ES
dc.description.references Menshchikova, T. V., Eremeev, S. V., & Chulkov, E. V. (2013). Electronic structure of SnSb2Te4 and PbSb2Te4 topological insulators. Applied Surface Science, 267, 1-3. doi:10.1016/j.apsusc.2012.04.048 es_ES
dc.description.references Concas, G., de Pascale, T. M., Garbato, L., Ledda, F., Meloni, F., Rucci, A., & Serra, M. (1992). Electronic and structural properties of the layered SnSb2Te4 semiconductor: Ab initio total-energy and Mössbauer spectroscopy study. Journal of Physics and Chemistry of Solids, 53(6), 791-796. doi:10.1016/0022-3697(92)90191-f es_ES
dc.description.references Eremeev, S. V., Menshchikova, T. V., Silkin, I. V., Vergniory, M. G., Echenique, P. M., & Chulkov, E. V. (2015). Sublattice effect on topological surface states in complex(SnTe)n>1(Bi2Te3)m=1compounds. Physical Review B, 91(24). doi:10.1103/physrevb.91.245145 es_ES
dc.description.references Kuznetsov, A. Y., Pereira, A. S., Shiryaev, A. A., Haines, J., Dubrovinsky, L., Dmitriev, V., … Guignot, N. (2006). Pressure-Induced Chemical Decomposition and Structural Changes of Boric Acid. The Journal of Physical Chemistry B, 110(28), 13858-13865. doi:10.1021/jp061650d es_ES
dc.description.references Shelimova, L. E., Karpinskii, O. G., Konstantinov, P. P., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2004). Crystal Structures and Thermoelectric Properties of Layered Compounds in the ATe–Bi2Te3(A = Ge, Sn, Pb) Systems. Inorganic Materials, 40(5), 451-460. doi:10.1023/b:inma.0000027590.43038.a8 es_ES
dc.description.references Kuropatwa, B. A., Assoud, A., & Kleinke, H. (2013). Effects of Cation Site Substitutions on the Thermoelectric Performance of Layered SnBi2Te4utilizing the Triel Elements Ga, In, and Tl. Zeitschrift für anorganische und allgemeine Chemie, 639(14), 2411-2420. doi:10.1002/zaac.201300325 es_ES
dc.description.references Kuropatwa, B. A., & Kleinke, H. (2012). Thermoelectric Properties of Stoichiometric Compounds in the (SnTe)x(Bi2Te3)ySystem. Zeitschrift für anorganische und allgemeine Chemie, 638(15), 2640-2647. doi:10.1002/zaac.201200284 es_ES
dc.description.references Banik, A., & Biswas, K. (2017). Synthetic Nanosheets of Natural van der Waals Heterostructures. Angewandte Chemie International Edition, 56(46), 14561-14566. doi:10.1002/anie.201708293 es_ES
dc.description.references Shelimova, L. E., Karpinskii, O. G., Svechnikova, T. E., Nikhezina, I. Y., Avilov, E. S., Kretova, M. A., & Zemskov, V. S. (2008). Effect of cadmium, silver, and tellurium doping on the properties of single crystals of the layered compounds PbBi4Te7 and PbSb2Te4. Inorganic Materials, 44(4), 371-376. doi:10.1134/s0020168508040080 es_ES
dc.description.references Shu, H. W., Jaulmes, S., & Flahaut, J. (1988). Syste`me AsGeTe. Journal of Solid State Chemistry, 74(2), 277-286. doi:10.1016/0022-4596(88)90356-8 es_ES
dc.description.references Adouby, K., Abba Touré, A., Kra, G., Olivier-Fourcade, J., Jumas, J.-C., & Perez Vicente, C. (2000). Phase diagram and local environment of Sn and Te: SnTe Bi and SnTe Bi 2 Te 3 systems. Comptes Rendus de l’Académie des Sciences - Series IIC - Chemistry, 3(1), 51-58. doi:10.1016/s1387-1609(00)00105-5 es_ES
dc.description.references Oeckler, O., Schneider, M. N., Fahrnbauer, F., & Vaughan, G. (2011). Atom distribution in SnSb2Te4 by resonant X-ray diffraction. Solid State Sciences, 13(5), 1157-1161. doi:10.1016/j.solidstatesciences.2010.12.043 es_ES
dc.description.references Schäfer, T., Konze, P. M., Huyeng, J. D., Deringer, V. L., Lesieur, T., Müller, P., … Wuttig, M. (2017). Chemical Tuning of Carrier Type and Concentration in a Homologous Series of Crystalline Chalcogenides. Chemistry of Materials, 29(16), 6749-6757. doi:10.1021/acs.chemmater.7b01595 es_ES
dc.description.references Gallus, J. Lattice Dynamics in the SnSb2Te4 Phase Change Material. Diplomarbeit; Rheinisch-Westfälischen Technischen Hochschule Aachen: 2011. es_ES
dc.description.references Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777 es_ES
dc.description.references Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280 es_ES
dc.description.references Yu, Y., Cagnoni, M., Cojocaru‐Mirédin, O., & Wuttig, M. (2019). Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism. Advanced Functional Materials, 30(8), 1904862. doi:10.1002/adfm.201904862 es_ES
dc.description.references Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V 2 VI 3 or Pn 2 Ch 3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316 es_ES
dc.description.references Kooi, B. J., & Wuttig, M. (2020). Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement. Advanced Materials, 32(21), 1908302. doi:10.1002/adma.201908302 es_ES
dc.description.references Hsieh, W.-P., Zalden, P., Wuttig, M., Lindenberg, A. M., & Mao, W. L. (2013). High-pressure Raman spectroscopy of phase change materials. Applied Physics Letters, 103(19), 191908. doi:10.1063/1.4829358 es_ES
dc.description.references Vilaplana, R., Sans, J. A., Manjón, F. J., Andrada-Chacón, A., Sánchez-Benítez, J., Popescu, C., … Oeckler, O. (2016). Structural and electrical study of the topological insulator SnBi2Te4 at high pressure. Journal of Alloys and Compounds, 685, 962-970. doi:10.1016/j.jallcom.2016.06.170 es_ES
dc.description.references Song, P., Matsumoto, R., Hou, Z., Adachi, S., Hara, H., Saito, Y., … Takano, Y. (2020). Pressure-induced superconductivity in SnSb2Te4. Journal of Physics: Condensed Matter, 32(23), 235901. doi:10.1088/1361-648x/ab76e2 es_ES
dc.description.references Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900 es_ES
dc.description.references Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 es_ES
dc.description.references Larson, A. C.; Von Dreele, R. B.General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86-748; 1994. es_ES
dc.description.references Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 es_ES
dc.description.references Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057 es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Syassen, K. (2008). Ruby under pressure. High Pressure Research, 28(2), 75-126. doi:10.1080/08957950802235640 es_ES
dc.description.references Debernardi, A., Ulrich, C., Cardona, M., & Syassen, K. (2001). Pressure Dependence of Raman Linewidth in Semiconductors. physica status solidi (b), 223(1), 213-223. doi:10.1002/1521-3951(200101)223:1<213::aid-pssb213>3.0.co;2-i es_ES
dc.description.references Garcia-Domene, B., Ortiz, H. M., Gomis, O., Sans, J. A., Manjón, F. J., Muñoz, A., … Tyagi, A. K. (2012). High-pressure lattice dynamical study of bulk and nanocrystalline In2O3. Journal of Applied Physics, 112(12), 123511. doi:10.1063/1.4769747 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 es_ES
dc.description.references Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Parlinski, K. see: http://www.computingformaterials.com/index.html. March 2020. es_ES
dc.description.references Tang, W., Sanville, E., & Henkelman, G. (2009). A grid-based Bader analysis algorithm without lattice bias. Journal of Physics: Condensed Matter, 21(8), 084204. doi:10.1088/0953-8984/21/8/084204 es_ES
dc.description.references Sanville, E., Kenny, S. D., Smith, R., & Henkelman, G. (2007). Improved grid-based algorithm for Bader charge allocation. Journal of Computational Chemistry, 28(5), 899-908. doi:10.1002/jcc.20575 es_ES
dc.description.references Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354-360. doi:10.1016/j.commatsci.2005.04.010 es_ES
dc.description.references Yu, M., & Trinkle, D. R. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111. doi:10.1063/1.3553716 es_ES
dc.description.references http://theory.cm.utexas.edu/henkelman/code/bader/. March 2019. es_ES
dc.description.references Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., & Yang, W. (2010). Revealing Noncovalent Interactions. Journal of the American Chemical Society, 132(18), 6498-6506. doi:10.1021/ja100936w es_ES
dc.description.references Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N., & Yang, W. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. Journal of Chemical Theory and Computation, 7(3), 625-632. doi:10.1021/ct100641a es_ES
dc.description.references Angel, R. J., Alvaro, M., & Gonzalez-Platas, J. (2014). EosFit7c and a Fortran module (library) for equation of state calculations. Zeitschrift für Kristallographie - Crystalline Materials, 229(5), 405-419. doi:10.1515/zkri-2013-1711 es_ES
dc.description.references Zhou, D., Li, Q., Ma, Y., Cui, Q., & Chen, C. (2013). Unraveling Convoluted Structural Transitions in SnTe at High Pressure. The Journal of Physical Chemistry C, 117(10), 5352-5357. doi:10.1021/jp4008762 es_ES
dc.description.references Gomis, O., Vilaplana, R., Manjón, F. J., Rodríguez-Hernández, P., Pérez-González, E., Muñoz, A., … Drasar, C. (2011). Lattice dynamics of Sb2Te3at high pressures. Physical Review B, 84(17). doi:10.1103/physrevb.84.174305 es_ES
dc.description.references Sakai, N., Kajiwara, T., Takemura, K., Minomura, S., & Fujii, Y. (1981). Pressure-induced phase transition in Sb2Te3. Solid State Communications, 40(12), 1045-1047. doi:10.1016/0038-1098(81)90248-9 es_ES
dc.description.references Wang, B.-T., Souvatzis, P., Eriksson, O., & Zhang, P. (2015). Lattice dynamics and chemical bonding in Sb2Te3 from first-principles calculations. The Journal of Chemical Physics, 142(17), 174702. doi:10.1063/1.4919683 es_ES
dc.description.references Pereira, A. L. J., Sans, J. A., Vilaplana, R., Gomis, O., Manjón, F. J., Rodríguez-Hernández, P., … Beltrán, A. (2014). Isostructural Second-Order Phase Transition of β-Bi2O3 at High Pressures: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 118(40), 23189-23201. doi:10.1021/jp507826j es_ES
dc.description.references Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049 es_ES
dc.description.references Robinson, K., Gibbs, G. V., & Ribbe, P. H. (1971). Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. Science, 172(3983), 567-570. doi:10.1126/science.172.3983.567 es_ES
dc.description.references Baur, W. H. (1974). The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(5), 1195-1215. doi:10.1107/s0567740874004560 es_ES
dc.description.references Walsh, A., & Watson, G. W. (2005). Influence of the Anion on Lone Pair Formation in Sn(II) Monochalcogenides:  A DFT Study. The Journal of Physical Chemistry B, 109(40), 18868-18875. doi:10.1021/jp051822r es_ES
dc.description.references Skowron, A., Boswell, F. W., Corbett, J. M., & Taylor, N. J. (1994). Structure Determination of PbSb2Se4. Journal of Solid State Chemistry, 112(2), 251-254. doi:10.1006/jssc.1994.1300 es_ES
dc.description.references Smith, P. P. K., & Parise, J. B. (1985). Structure determination of SnSb2S4 and SnSb2Se4 by high-resolution electron microscopy. Acta Crystallographica Section B Structural Science, 41(2), 84-87. doi:10.1107/s0108768185001665 es_ES
dc.description.references Iitaka, Y., & Nowacki, W. (1962). A redetermination of the crystal structure of galenobismutite, PbBi2S4. Acta Crystallographica, 15(7), 691-698. doi:10.1107/s0365110x62001887 es_ES
dc.description.references Gaspard, J.-P., & Ceolin, R. (1992). Hume-Rothery rule in V–VI compounds. Solid State Communications, 84(8), 839-842. doi:10.1016/0038-1098(92)90102-f es_ES
dc.description.references Gaspard, J.-P., Pellegatti, A., Marinelli, F., & Bichara, C. (1998). Peierls instabilities in covalent structures I. Electronic structure, cohesion and theZ= 8 –Nrule. Philosophical Magazine B, 77(3), 727-744. doi:10.1080/13642819808214831 es_ES
dc.description.references Seo, D.-K., & Hoffmann, R. (1999). What Determines the Structures of the Group 15 Elements? Journal of Solid State Chemistry, 147(1), 26-37. doi:10.1006/jssc.1999.8140 es_ES
dc.description.references Zhang, H., Liu, C.-X., & Zhang, S.-C. (2013). Spin-Orbital Texture in Topological Insulators. Physical Review Letters, 111(6). doi:10.1103/physrevlett.111.066801 es_ES
dc.description.references Tamtögl, A., Kraus, P., Mayrhofer-Reinhartshuber, M., Benedek, G., Bernasconi, M., Dragoni, D., … Ernst, W. E. (2019). Statics and dynamics of multivalley charge density waves in Sb(111). npj Quantum Materials, 4(1). doi:10.1038/s41535-019-0168-x es_ES
dc.description.references Li, Y.; Parsons, C.; Ramakrishna, S.; Dwivedi, A.; Schofield, M.; Reyes, A.; Guptasarma, P. Charge Density Wave Order in the Topological Insulator Bi2Se3. arXiv: 2002.12546. es_ES
dc.description.references Boulfelfel, S. E., Seifert, G., Grin, Y., & Leoni, S. (2012). Squeezing lone pairs: TheA17 toA7 pressure-induced phase transition in black phosphorus. Physical Review B, 85(1). doi:10.1103/physrevb.85.014110 es_ES
dc.description.references Zhang, X., Stevanović, V., d’ Avezac, M., Lany, S., & Zunger, A. (2012). Prediction ofA2BX4metal-chalcogenide compounds via first-principles thermodynamics. Physical Review B, 86(1). doi:10.1103/physrevb.86.014109 es_ES
dc.description.references Zunger, A. (1980). Systematization of the stable crystal structure of allAB-type binary compounds: A pseudopotential orbital-radii approach. Physical Review B, 22(12), 5839-5872. doi:10.1103/physrevb.22.5839 es_ES
dc.description.references Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672 es_ES
dc.description.references Kolobov, A. V., Haines, J., Pradel, A., Ribes, M., Fons, P., Tominaga, J., … Uruga, T. (2006). Pressure-Induced Site-Selective Disordering ofGe2Sb2Te5: A New Insight into Phase-Change Optical Recording. Physical Review Letters, 97(3). doi:10.1103/physrevlett.97.035701 es_ES
dc.description.references Arora, A. . (2000). Pressure-induced amorphization versus decomposition. Solid State Communications, 115(12), 665-668. doi:10.1016/s0038-1098(00)00253-2 es_ES
dc.description.references Bassett, W. A., & Li-Chung Ming. (1972). Disproportionation of Fe2SiO4 to 2FeO+SiO2 at pressures up to 250kbar and temperatures up to 3000 °C. Physics of the Earth and Planetary Interiors, 6(1-3), 154-160. doi:10.1016/0031-9201(72)90048-9 es_ES
dc.description.references Fei, Y., & Mao, H.-K. (1993). Static compression of Mg(OH)2to 78 GPa at high temperature and constraints on the equation of state of fluid H2O. Journal of Geophysical Research: Solid Earth, 98(B7), 11875-11884. doi:10.1029/93jb00701 es_ES
dc.description.references Catafesta, J., Rovani, P. R., Perottoni, C. A., & Pereira, A. S. (2015). Pressure-enhanced decomposition of Ag3[Co(CN)6]. Journal of Physics and Chemistry of Solids, 77, 151-156. doi:10.1016/j.jpcs.2014.10.006 es_ES
dc.description.references Duan, D., Huang, X., Tian, F., Li, D., Yu, H., Liu, Y., … Cui, T. (2015). Pressure-induced decomposition of solid hydrogen sulfide. Physical Review B, 91(18). doi:10.1103/physrevb.91.180502 es_ES
dc.description.references Zhu, J., Zhang, J. L., Kong, P. P., Zhang, S. J., Yu, X. H., Zhu, J. L., … Jin, C. Q. (2013). Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure. Scientific Reports, 3(1). doi:10.1038/srep02016 es_ES
dc.description.references Zhao, L., Deng, H., Korzhovska, I., Begliarbekov, M., Chen, Z., Andrade, E., … Krusin-Elbaum, L. (2015). Emergent surface superconductivity in the topological insulator Sb2Te3. Nature Communications, 6(1). doi:10.1038/ncomms9279 es_ES
dc.description.references Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 es_ES
dc.description.references Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411 es_ES
dc.description.references Marini, C., Chermisi, D., Lavagnini, M., Di Castro, D., Petrillo, C., Degiorgi, L., … Postorino, P. (2012). High-pressure phases of crystalline tellurium: A combined Raman andab initiostudy. Physical Review B, 86(6). doi:10.1103/physrevb.86.064103 es_ES
dc.description.references Vilaplana, R., Gomis, O., Manjón, F. J., Ortiz, H. M., Pérez-González, E., López-Solano, J., … Tiginyanu, I. M. (2013). Lattice Dynamics Study of HgGa2Se4 at High Pressures. The Journal of Physical Chemistry C, 117(30), 15773-15781. doi:10.1021/jp402493r es_ES
dc.description.references Ribeiro, G. A. S., Paulatto, L., Bianco, R., Errea, I., Mauri, F., & Calandra, M. (2018). Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles. Physical Review B, 97(1). doi:10.1103/physrevb.97.014306 es_ES
dc.description.references Pellicer-Porres, J., Segura, A., Ferrer-Roca, C., Sans, J. A., & Dumas, P. (2013). Investigation of lattice dynamical and dielectric properties of MgO under high pressure by means of mid- and far-infrared spectroscopy. Journal of Physics: Condensed Matter, 25(50), 505902. doi:10.1088/0953-8984/25/50/505902 es_ES
dc.description.references Wang, C.-H., Jing, X.-P., Feng, W., & Lu, J. (2008). Assignment of Raman-active vibrational modes of MgTiO3. Journal of Applied Physics, 104(3), 034112. doi:10.1063/1.2966717 es_ES
dc.description.references Zhao, K., Wang, Y., Sui, Y., Xin, C., Wang, X., Wang, Y., … Li, B. (2015). First principles study of isostructural phase transition in Sb2Te3under high pressure. physica status solidi (RRL) - Rapid Research Letters, 9(6), 379-383. doi:10.1002/pssr.201510091 es_ES
dc.description.references Cardona, M., & Thewalt, M. L. W. (2005). Isotope effects on the optical spectra of semiconductors. Reviews of Modern Physics, 77(4), 1173-1224. doi:10.1103/revmodphys.77.1173 es_ES
dc.description.references Manj�n, F. J., Serrano, J., Loa, I., Syassen, K., Lin, C. T., & Cardona, M. (2001). Effect of Pressure on the Anomalous Raman Spectrum of CuBr. physica status solidi (b), 223(1), 331-336. doi:10.1002/1521-3951(200101)223:1<331::aid-pssb331>3.0.co;2-e es_ES
dc.description.references Krauzman, M., Pick, R. M., Poulet, H., Hamel, G., & Prevot, B. (1974). Raman Detection of One-Phonon—Two-Phonon Interactions in CuCl. Physical Review Letters, 33(9), 528-530. doi:10.1103/physrevlett.33.528 es_ES
dc.description.references Kanellis, G., Kress, W., & Bilz, H. (1986). Fermi Resonance in the Phonon Spectra of Copper Halides. Physical Review Letters, 56(9), 938-940. doi:10.1103/physrevlett.56.938 es_ES
dc.description.references Agranovich, V. M. Spectroscopy and Excitation Dynamics of Condensed Moiecular Systems; North-Holland: Amsterdam, 1983; p 83. es_ES
dc.description.references Singh, R. K., & Gupta, D. C. (1989). Phase transition and high-pressure elastic behavior of copper halides. Physical Review B, 40(16), 11278-11283. doi:10.1103/physrevb.40.11278 es_ES
dc.description.references Gopakumar, A. M., Gupta, M. K., Mittal, R., Rols, S., & Chaplot, S. L. (2017). Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations. Physical Chemistry Chemical Physics, 19(19), 12107-12116. doi:10.1039/c7cp01517h es_ES
dc.description.references Hakeem, M. A., Jackson, D. E., Hamlin, J. J., Errandonea, D., Proctor, J. E., & Bettinelli, M. (2018). High Pressure Raman, Optical Absorption, and Resistivity Study of SrCrO4. Inorganic Chemistry, 57(13), 7550-7557. doi:10.1021/acs.inorgchem.8b00268 es_ES
dc.description.references Errandonea, D., Segura, A., Martínez-García, D., & Muñoz-San Jose, V. (2009). Hall-effect and resistivity measurements in CdTe and ZnTe at high pressure: Electronic structure of impurities in the zinc-blende phase and the semimetallic or metallic character of the high-pressure phases. Physical Review B, 79(12). doi:10.1103/physrevb.79.125203 es_ES
dc.description.references Reindl, J., Volker, H., Breznay, N. P., & Wuttig, M. (2019). Persistence of spin memory in a crystalline, insulating phase-change material. npj Quantum Materials, 4(1). doi:10.1038/s41535-019-0196-6 es_ES
dc.description.references Segura, A., Panchal, V., Sánchez-Royo, J. F., Marín-Borrás, V., Muñoz-Sanjosé, V., Rodríguez-Hernández, P., … González, J. (2012). Trapping of three-dimensional electrons and transition to two-dimensional transport in the three-dimensional topological insulator Bi2Se3under high pressure. Physical Review B, 85(19). doi:10.1103/physrevb.85.195139 es_ES
dc.description.references Mio, A. M., Konze, P. M., Meledin, A., Küpers, M., Pohlmann, M., Kaminski, M., … Wuttig, M. (2019). Impact of Bonding on the Stacking Defects in Layered Chalcogenides. Advanced Functional Materials, 29(37), 1902332. doi:10.1002/adfm.201902332 es_ES
dc.description.references Noury, S., Silvi, B., & Gillespie, R. J. (2002). Chemical Bonding in Hypervalent Molecules:  Is the Octet Rule Relevant? Inorganic Chemistry, 41(8), 2164-2172. doi:10.1021/ic011003v es_ES
dc.description.references Scheiner, S., & Lu, J. (2018). Halogen, Chalcogen, and Pnicogen Bonding Involving Hypervalent Atoms. Chemistry - A European Journal, 24(32), 8167-8177. doi:10.1002/chem.201800511 es_ES
dc.description.references Durrant, M. C. (2015). A quantitative definition of hypervalency. Chemical Science, 6(11), 6614-6623. doi:10.1039/c5sc02076j es_ES
dc.description.references Braïda, B., & Hiberty, P. C. (2013). The essential role of charge-shift bonding in hypervalent prototype XeF2. Nature Chemistry, 5(5), 417-422. doi:10.1038/nchem.1619 es_ES
dc.description.references Lee, T. H.; Elliott, S. R. Chemical bonding in chalcogenides: the concept of multi-centre hyperbonding. arXiv 1909.05281. es_ES
dc.description.references Shaik, S., Danovich, D., Galbraith, J. M., Braïda, B., Wu, W., & Hiberty, P. C. (2019). Charge‐Shift Bonding: A New and Unique Form of Bonding. Angewandte Chemie International Edition, 59(3), 984-1001. doi:10.1002/anie.201910085 es_ES
dc.description.references Berski, S., & Durlak, P. (2017). Dimeric nature of N-coordinated Mg and Ca ions in metaloorganic compounds. The topological analysis of ELF functions for Mg–Mg and Ca–Ca bonds. Polyhedron, 129, 22-29. doi:10.1016/j.poly.2017.03.024 es_ES
dc.description.references Gatti, C. (2005). Chemical bonding in crystals: new directions. Zeitschrift für Kristallographie - Crystalline Materials, 220(5-6), 399-457. doi:10.1524/zkri.220.5.399.65073 es_ES
dc.description.references Sa, B., Miao, N., Zhou, J., Sun, Z., & Ahuja, R. (2010). Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6. Physical Chemistry Chemical Physics, 12(7), 1585. doi:10.1039/b920990e es_ES
dc.description.references Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110 es_ES
dc.description.references Xu, M., Jakobs, S., Mazzarello, R., Cho, J.-Y., Yang, Z., Hollermann, H., … Wuttig, M. (2017). Impact of Pressure on the Resonant Bonding in Chalcogenides. The Journal of Physical Chemistry C, 121(45), 25447-25454. doi:10.1021/acs.jpcc.7b07546 es_ES
dc.description.references Cuenca-Gotor, V. P., Sans, J. Á., Gomis, O., Mujica, A., Radescu, S., Muñoz, A., … Manjón, F. J. (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics, 22(6), 3352-3369. doi:10.1039/c9cp06298j es_ES
dc.description.references Matsunaga, T., & Yamada, N. (2004). Structural investigation ofGeSb2Te4: A high-speed phase-change material. Physical Review B, 69(10). doi:10.1103/physrevb.69.104111 es_ES
dc.description.references Selivanov, E. N., Gulyaeva, R. I., & Vershinin, A. D. (2008). Thermal expansion and phase transformations of natural pyrrhotite. Inorganic Materials, 44(4), 438-442. doi:10.1134/s0020168508040201 es_ES


This item appears in the following Collection(s)

Show simple item record