Mostrar el registro sencillo del ítem
dc.contributor.author | Noriega-Hevia, Guillermo | es_ES |
dc.contributor.author | Serralta Sevilla, Joaquín | es_ES |
dc.contributor.author | Borrás, L. | es_ES |
dc.contributor.author | Seco, A. | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.date.accessioned | 2021-02-19T04:33:14Z | |
dc.date.available | 2021-02-19T04:33:14Z | |
dc.date.issued | 2020-08 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161836 | |
dc.description.abstract | [EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model able to represent the time evolution of pH and nitrogen concentration during the recovery process is presented in this paper. The developed model accurately reproduced the results obtained in 26 experiments carried out at different pH values (from 9 to 11), temperatures (from 25 to 35 degrees C), membrane surfaces (from 1.2 to 2.4 m(2)) and feed flow rates (from 0.33 x 10(-5) to 5.83 x 10(-5) m(3)/s) predicting the variations in nitrogen recovery rates measured at the different operating conditions evaluated. Furthermore, due to the combination of nitrogen and pH modelling, the model is able to predict the variations in OH-concentration (alkali addition) required to increase and maintain the pH during the process. Thus, this model is a useful tool for process design and optimisation since it can predict nitrogen recovery rates and reagents consumption at different operational conditions such as flow rate, pH, membrane surface and temperature. | es_ES |
dc.description.sponsorship | This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C21/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well as the Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the first author. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Chemical Engineering | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Ammonia recovery | es_ES |
dc.subject | Membrane contactor for nitrogen recovery | es_ES |
dc.subject | Nitrogen recovery modelling | es_ES |
dc.subject | Nutrient recovery from anaerobic digestion | es_ES |
dc.subject | PH modelling | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jece.2020.103880 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Noriega-Hevia, G.; Serralta Sevilla, J.; Borrás, L.; Seco, A.; Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering. 8(4):1-10. https://doi.org/10.1016/j.jece.2020.103880 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jece.2020.103880 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 2213-3437 | es_ES |
dc.relation.pasarela | S\409031 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Razon, L. F. (2013). Life cycle analysis of an alternative to the haber-bosch process: Non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environmental Progress & Sustainable Energy, 33(2), 618-624. doi:10.1002/ep.11817 | es_ES |
dc.description.references | Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), 1282. doi:10.3390/ijerph16071282 | es_ES |
dc.description.references | Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021 | es_ES |
dc.description.references | Martí, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074 | es_ES |
dc.description.references | Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:10.1016/j.scitotenv.2019.03.485 | es_ES |
dc.description.references | Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673 | es_ES |
dc.description.references | Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. A., Tack, F. M. G., & Meers, E. (2016). Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste and Biomass Valorization, 8(1), 21-40. doi:10.1007/s12649-016-9642-x | es_ES |
dc.description.references | Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016 | es_ES |
dc.description.references | Daguerre-Martini, S., Vanotti, M. B., Rodriguez-Pastor, M., Rosal, A., & Moral, R. (2018). Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Research, 137, 201-210. doi:10.1016/j.watres.2018.03.013 | es_ES |
dc.description.references | Younas, M., Bocquet, S. D., & Sanchez, J. (2008). Extraction of aroma compounds in a HFMC: Dynamic modelling and simulation. Journal of Membrane Science, 323(2), 386-394. doi:10.1016/j.memsci.2008.06.045 | es_ES |
dc.description.references | Qiu, D., Wu, Z., Huang, S.-M., Ye, W.-B., Chen, X., Luo, J., & Yang, M. (2017). Laminar flow and heat transfer in an internally-cooled hexagonal parallel-plate membrane channel (IHPMC). Applied Thermal Engineering, 124, 767-780. doi:10.1016/j.applthermaleng.2017.06.079 | es_ES |
dc.description.references | Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 | es_ES |
dc.description.references | Garcia-González, M. C., & Vanotti, M. B. (2015). Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH. Waste Management, 38, 455-461. doi:10.1016/j.wasman.2015.01.021 | es_ES |
dc.description.references | Li, H., Wang, W., & Zhang, Y. (2014). Preparation and characterization of high-selectivity hollow fiber composite nanofiltration membrane by two-way coating technique. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41187 | es_ES |
dc.description.references | Wang, Z., Gong, H., Zhang, Y., Liang, P., & Wang, K. (2017). Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chemical Engineering Journal, 316, 1-6. doi:10.1016/j.cej.2017.01.082 | es_ES |
dc.description.references | Wett, B., Nyhuis, G., Takács, I., & Murthy, S. (2010). Development of Enhanced Deammonification Selector. Proceedings of the Water Environment Federation, 2010(10), 5917-5926. doi:10.2175/193864710798194139 | es_ES |
dc.description.references | Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-y | es_ES |
dc.description.references | Ashrafizadeh, S. N., & Khorasani, Z. (2010). Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chemical Engineering Journal, 162(1), 242-249. doi:10.1016/j.cej.2010.05.036 | es_ES |
dc.description.references | Tan, X., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271(1-2), 59-68. doi:10.1016/j.memsci.2005.06.057 | es_ES |
dc.description.references | Nosratinia, F., Ghadiri, M., & Ghahremani, H. (2014). Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors. Journal of Industrial and Engineering Chemistry, 20(5), 2958-2963. doi:10.1016/j.jiec.2013.10.065 | es_ES |
dc.description.references | Licon, E., Reig, M., Villanova, P., Valderrama, C., Gibert, O., & Cortina, J. L. (2014). Ammonium removal by liquid–liquid membrane contactors in water purification process for hydrogen production. Desalination and Water Treatment, 56(13), 3607-3616. doi:10.1080/19443994.2014.974216 | es_ES |
dc.description.references | Nagy, J., Kaljunen, J., & Toth, A. J. (2019). Nitrogen recovery from wastewater and human urine with hydrophobic gas separation membrane: experiments and modelling. Chemical Papers, 73(8), 1903-1915. doi:10.1007/s11696-019-00740-x | es_ES |
dc.description.references | Moosbrugger, R. E., Wentzel, M. C., Ekama, G. A., & Marais, G. v. R. (1993). A 5 pH Point Titration Method for Determining the Carbonate and SCFA Weak Acid/Bases in Anaerobic Systems. Water Science and Technology, 28(2), 237-245. doi:10.2166/wst.1993.0112 | es_ES |
dc.description.references | Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009 | es_ES |
dc.description.references | Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845 | es_ES |
dc.description.references | ZHENG, J., DAI, Z., WONG, F., & XU, Z. (2005). Shell side mass transfer in a transverse flow hollow fiber membrane contactor. Journal of Membrane Science, 261(1-2), 114-120. doi:10.1016/j.memsci.2005.02.035 | es_ES |
dc.description.references | Qu, D., Sun, D., Wang, H., & Yun, Y. (2013). Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination, 326, 135-140. doi:10.1016/j.desal.2013.07.021 | es_ES |