- -

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Noriega-Hevia, Guillermo es_ES
dc.contributor.author Serralta Sevilla, Joaquín es_ES
dc.contributor.author Borrás, L. es_ES
dc.contributor.author Seco, A. es_ES
dc.contributor.author FERRER, J. es_ES
dc.date.accessioned 2021-02-19T04:33:14Z
dc.date.available 2021-02-19T04:33:14Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161836
dc.description.abstract [EN] A hollow fibre membrane contactor has been applied for nitrogen recovery from anaerobic digestion supernatant at different operating conditions obtaining nitrogen recovery efficiencies over 99 %. A mathematical model able to represent the time evolution of pH and nitrogen concentration during the recovery process is presented in this paper. The developed model accurately reproduced the results obtained in 26 experiments carried out at different pH values (from 9 to 11), temperatures (from 25 to 35 degrees C), membrane surfaces (from 1.2 to 2.4 m(2)) and feed flow rates (from 0.33 x 10(-5) to 5.83 x 10(-5) m(3)/s) predicting the variations in nitrogen recovery rates measured at the different operating conditions evaluated. Furthermore, due to the combination of nitrogen and pH modelling, the model is able to predict the variations in OH-concentration (alkali addition) required to increase and maintain the pH during the process. Thus, this model is a useful tool for process design and optimisation since it can predict nitrogen recovery rates and reagents consumption at different operational conditions such as flow rate, pH, membrane surface and temperature. es_ES
dc.description.sponsorship This research was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO projects CTM2014-54980-C21/2-R and CTM2017-86751-C2-1/2-R) with the European Regional Development Fund (ERDF) as well as the Universitat Politecnica de Valencia via a pre-doctoral FPI fellowship to the first author. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Chemical Engineering es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Ammonia recovery es_ES
dc.subject Membrane contactor for nitrogen recovery es_ES
dc.subject Nitrogen recovery modelling es_ES
dc.subject Nutrient recovery from anaerobic digestion es_ES
dc.subject PH modelling es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jece.2020.103880 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-1-R/ES/ESTUDIO EXPERIMENTAL DE LA APLICACION DE LA TECNOLOGIA DE MEMBRANAS PARA POTENCIAR LA RECUPERACION DE RECURSOS EN LAS EDAR ACTUALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTM2017-86751-C2-2-R/ES/MODELACION Y CONTROL PARA LA IMPLEMENTACION DE LA LA TECNOLOGIA DE MEMBRANAS EN LAS EDAR ACTUALES PARA SU TRANSFORMACION EN ESTACIONES DE RECUPERACION DE RECURSOS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Noriega-Hevia, G.; Serralta Sevilla, J.; Borrás, L.; Seco, A.; Ferrer, J. (2020). Nitrogen recovery using a membrane contactor: Modelling nitrogen and pH evolution. Journal of Environmental Chemical Engineering. 8(4):1-10. https://doi.org/10.1016/j.jece.2020.103880 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jece.2020.103880 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2213-3437 es_ES
dc.relation.pasarela S\409031 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Razon, L. F. (2013). Life cycle analysis of an alternative to the haber-bosch process: Non-renewable energy usage and global warming potential of liquid ammonia from cyanobacteria. Environmental Progress & Sustainable Energy, 33(2), 618-624. doi:10.1002/ep.11817 es_ES
dc.description.references Guo, Z., Sun, Y., Pan, S.-Y., & Chiang, P.-C. (2019). Integration of Green Energy and Advanced Energy-Efficient Technologies for Municipal Wastewater Treatment Plants. International Journal of Environmental Research and Public Health, 16(7), 1282. doi:10.3390/ijerph16071282 es_ES
dc.description.references Batstone, D. J., Hülsen, T., Mehta, C. M., & Keller, J. (2015). Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 140, 2-11. doi:10.1016/j.chemosphere.2014.10.021 es_ES
dc.description.references Martí, N., Barat, R., Seco, A., Pastor, L., & Bouzas, A. (2017). Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants. Journal of Environmental Management, 196, 340-346. doi:10.1016/j.jenvman.2016.12.074 es_ES
dc.description.references Aguado, D., Barat, R., Bouzas, A., Seco, A., & Ferrer, J. (2019). P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources. Science of The Total Environment, 672, 88-96. doi:10.1016/j.scitotenv.2019.03.485 es_ES
dc.description.references Robles, Á., Aguado, D., Barat, R., Borrás, L., Bouzas, A., Giménez, J. B., … Seco, A. (2020). New frontiers from removal to recycling of nitrogen and phosphorus from wastewater in the Circular Economy. Bioresource Technology, 300, 122673. doi:10.1016/j.biortech.2019.122673 es_ES
dc.description.references Vaneeckhaute, C., Lebuf, V., Michels, E., Belia, E., Vanrolleghem, P. A., Tack, F. M. G., & Meers, E. (2016). Nutrient Recovery from Digestate: Systematic Technology Review and Product Classification. Waste and Biomass Valorization, 8(1), 21-40. doi:10.1007/s12649-016-9642-x es_ES
dc.description.references Darestani, M., Haigh, V., Couperthwaite, S. J., Millar, G. J., & Nghiem, L. D. (2017). Hollow fibre membrane contactors for ammonia recovery: Current status and future developments. Journal of Environmental Chemical Engineering, 5(2), 1349-1359. doi:10.1016/j.jece.2017.02.016 es_ES
dc.description.references Daguerre-Martini, S., Vanotti, M. B., Rodriguez-Pastor, M., Rosal, A., & Moral, R. (2018). Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Research, 137, 201-210. doi:10.1016/j.watres.2018.03.013 es_ES
dc.description.references Younas, M., Bocquet, S. D., & Sanchez, J. (2008). Extraction of aroma compounds in a HFMC: Dynamic modelling and simulation. Journal of Membrane Science, 323(2), 386-394. doi:10.1016/j.memsci.2008.06.045 es_ES
dc.description.references Qiu, D., Wu, Z., Huang, S.-M., Ye, W.-B., Chen, X., Luo, J., & Yang, M. (2017). Laminar flow and heat transfer in an internally-cooled hexagonal parallel-plate membrane channel (IHPMC). Applied Thermal Engineering, 124, 767-780. doi:10.1016/j.applthermaleng.2017.06.079 es_ES
dc.description.references Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492 es_ES
dc.description.references Garcia-González, M. C., & Vanotti, M. B. (2015). Recovery of ammonia from swine manure using gas-permeable membranes: Effect of waste strength and pH. Waste Management, 38, 455-461. doi:10.1016/j.wasman.2015.01.021 es_ES
dc.description.references Li, H., Wang, W., & Zhang, Y. (2014). Preparation and characterization of high-selectivity hollow fiber composite nanofiltration membrane by two-way coating technique. Journal of Applied Polymer Science, 131(23), n/a-n/a. doi:10.1002/app.41187 es_ES
dc.description.references Wang, Z., Gong, H., Zhang, Y., Liang, P., & Wang, K. (2017). Nitrogen recovery from low-strength wastewater by combined membrane capacitive deionization (MCDI) and ion exchange (IE) process. Chemical Engineering Journal, 316, 1-6. doi:10.1016/j.cej.2017.01.082 es_ES
dc.description.references Wett, B., Nyhuis, G., Takács, I., & Murthy, S. (2010). Development of Enhanced Deammonification Selector. Proceedings of the Water Environment Federation, 2010(10), 5917-5926. doi:10.2175/193864710798194139 es_ES
dc.description.references Wickramasinghe, S. R., Semmens, M. J., & Cussler, E. L. (1993). Hollow fiber modules made with hollow fiber fabric. Journal of Membrane Science, 84(1-2), 1-14. doi:10.1016/0376-7388(93)85046-y es_ES
dc.description.references Ashrafizadeh, S. N., & Khorasani, Z. (2010). Ammonia removal from aqueous solutions using hollow-fiber membrane contactors. Chemical Engineering Journal, 162(1), 242-249. doi:10.1016/j.cej.2010.05.036 es_ES
dc.description.references Tan, X., Tan, S. P., Teo, W. K., & Li, K. (2006). Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271(1-2), 59-68. doi:10.1016/j.memsci.2005.06.057 es_ES
dc.description.references Nosratinia, F., Ghadiri, M., & Ghahremani, H. (2014). Mathematical modeling and numerical simulation of ammonia removal from wastewaters using membrane contactors. Journal of Industrial and Engineering Chemistry, 20(5), 2958-2963. doi:10.1016/j.jiec.2013.10.065 es_ES
dc.description.references Licon, E., Reig, M., Villanova, P., Valderrama, C., Gibert, O., & Cortina, J. L. (2014). Ammonium removal by liquid–liquid membrane contactors in water purification process for hydrogen production. Desalination and Water Treatment, 56(13), 3607-3616. doi:10.1080/19443994.2014.974216 es_ES
dc.description.references Nagy, J., Kaljunen, J., & Toth, A. J. (2019). Nitrogen recovery from wastewater and human urine with hydrophobic gas separation membrane: experiments and modelling. Chemical Papers, 73(8), 1903-1915. doi:10.1007/s11696-019-00740-x es_ES
dc.description.references Moosbrugger, R. E., Wentzel, M. C., Ekama, G. A., & Marais, G. v. R. (1993). A 5 pH Point Titration Method for Determining the Carbonate and SCFA Weak Acid/Bases in Anaerobic Systems. Water Science and Technology, 28(2), 237-245. doi:10.2166/wst.1993.0112 es_ES
dc.description.references Serralta, J., Ferrer, J., Borrás, L., & Seco, A. (2004). An extension of ASM2d including pH calculation. Water Research, 38(19), 4029-4038. doi:10.1016/j.watres.2004.07.009 es_ES
dc.description.references Kartohardjono, S., Iwan Fermi, M., Yuliusman, Y., Elkardiana, K., Putra Sangaji, A., & Maghfirwan Ramadhan, A. (2015). The Removal of Dissolved Ammonia from Wastewater through a Polypropylene Hollow Fiber Membrane Contactor. International Journal of Technology, 6(7), 1146. doi:10.14716/ijtech.v6i7.1845 es_ES
dc.description.references ZHENG, J., DAI, Z., WONG, F., & XU, Z. (2005). Shell side mass transfer in a transverse flow hollow fiber membrane contactor. Journal of Membrane Science, 261(1-2), 114-120. doi:10.1016/j.memsci.2005.02.035 es_ES
dc.description.references Qu, D., Sun, D., Wang, H., & Yun, Y. (2013). Experimental study of ammonia removal from water by modified direct contact membrane distillation. Desalination, 326, 135-140. doi:10.1016/j.desal.2013.07.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem