Arenas FJ. El impacto ambiental en la edificación. Criterios para una edificación sostenible, 1st ed. Madrid: Edisofer, 2007, p. 248.
Miravete A. Los nuevos materiales en la construcción, 1st ed. Barcelona: Reverté, 1995, p. 394.
Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57(6), 689-703. doi:10.1134/s0965545x15070068
[+]
Arenas FJ. El impacto ambiental en la edificación. Criterios para una edificación sostenible, 1st ed. Madrid: Edisofer, 2007, p. 248.
Miravete A. Los nuevos materiales en la construcción, 1st ed. Barcelona: Reverté, 1995, p. 394.
Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57(6), 689-703. doi:10.1134/s0965545x15070068
Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159
La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017
Mahboob, Z., El Sawi, I., Zdero, R., Fawaz, Z., & Bougherara, H. (2017). Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92, 118-133. doi:10.1016/j.compositesa.2016.11.007
Paynel, F., Morvan, C., Marais, S., & Lebrun, L. (2013). Improvement of the hydrolytic stability of new flax-based biocomposite materials. Polymer Degradation and Stability, 98(1), 190-197. doi:10.1016/j.polymdegradstab.2012.10.010
Badia, J. D., Kittikorn, T., Strömberg, E., Santonja-Blasco, L., Martínez-Felipe, A., Ribes-Greus, A., … Karlsson, S. (2014). Water absorption and hydrothermal performance of PHBV/sisal biocomposites. Polymer Degradation and Stability, 108, 166-174. doi:10.1016/j.polymdegradstab.2014.04.012
Alvarez, V. A., & Vázquez, A. (2004). Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, 84(1), 13-21. doi:10.1016/j.polymdegradstab.2003.09.003
Liu, L., Yu, J., Cheng, L., & Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. doi:10.1016/j.polymdegradstab.2008.10.013
Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Recent developments in sugar palm ( Arenga pinnata ) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, 533-549. doi:10.1016/j.rser.2015.10.037
Abdul Khalil, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353-368. doi:10.1016/j.matdes.2012.06.015
Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027
Maciá, A., Baeza, F. J., Saval, J. M., & Ivorra, S. (2016). Mechanical properties of boards made in biocomposites reinforced with wood and Posidonia oceanica fibers. Composites Part B: Engineering, 104, 1-8. doi:10.1016/j.compositesb.2016.08.018
Das, O., Bhattacharyya, D., Hui, D., & Lau, K.-T. (2016). Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 106, 120-128. doi:10.1016/j.compositesb.2016.09.020
Fowler, P. A., Hughes, J. M., & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86(12), 1781-1789. doi:10.1002/jsfa.2558
Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024
Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007
Tascioglu, C., Tufan, M., Yalcin, M., & Sen, S. (2016). Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood. Journal of Thermoplastic Composite Materials, 29(11), 1461-1479. doi:10.1177/0892705714565704
Bhaskar, J., Haq, S., & Yadaw, S. (2011). Evaluation and testing of mechanical properties of wood plastic composite. Journal of Thermoplastic Composite Materials, 25(4), 391-401. doi:10.1177/0892705711406158
Friedrich, D., & Luible, A. (2016). Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Construction and Building Materials, 124, 1142-1152. doi:10.1016/j.conbuildmat.2016.08.123
Gourier, C., Bourmaud, A., Le Duigou, A., & Baley, C. (2017). Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polymer Degradation and Stability, 136, 1-9. doi:10.1016/j.polymdegradstab.2016.12.003
Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. doi:10.1016/j.compositesa.2015.08.038
Muthuraj, R., Misra, M., Defersha, F., & Mohanty, A. K. (2016). Influence of processing parameters on the impact strength of biocomposites: A statistical approach. Composites Part A: Applied Science and Manufacturing, 83, 120-129. doi:10.1016/j.compositesa.2015.09.003
Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010
Campos, A., Marconcini, J. M., Martins-Franchetti, S. M., & Mattoso, L. H. C. (2012). The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polymer Degradation and Stability, 97(10), 1948-1955. doi:10.1016/j.polymdegradstab.2011.11.010
Azwar, E., Vuorinen, E., & Hakkarainen, M. (2012). Pyrolysis-GC–MS reveals important differences in hydrolytic degradation process of wood flour and rice bran filled polylactide composites. Polymer Degradation and Stability, 97(3), 281-287. doi:10.1016/j.polymdegradstab.2011.12.017
Soccalingame, L., Perrin, D., Bénézet, J.-C., Mani, S., Coiffier, F., Richaud, E., & Bergeret, A. (2015). Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polymer Degradation and Stability, 120, 313-327. doi:10.1016/j.polymdegradstab.2015.07.013
Soccalingame, L., Perrin, D., Bénézet, J.-C., & Bergeret, A. (2016). Reprocessing of UV-weathered wood flour reinforced polypropylene composites: Study of a natural outdoor exposure. Polymer Degradation and Stability, 133, 389-398. doi:10.1016/j.polymdegradstab.2016.09.011
Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. doi:10.1016/j.matdes.2012.11.025
Zabel RA, Morrell JJ. Wood microbiology: Decay and its prevention. Cambridge, MA: Academic Press, 2012, p. 498.
[-]