- -

Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vercher Sanchis, José es_ES
dc.contributor.author Fombuena, Vicent es_ES
dc.contributor.author Díaz, Arturo es_ES
dc.contributor.author Soriano Cubells, Mª Juana es_ES
dc.date.accessioned 2021-02-19T04:33:16Z
dc.date.available 2021-02-19T04:33:16Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0892-7057 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161837
dc.description.abstract [EN] The awareness of society on environmental issues has increased in recent years. This article focuses on the wood-plastic composites (WPCs), obtained from recycled plastics and natural fibres waste, and their application in architecture. In order to give some recommendations to architects regarding the choice of a WPC as an alternative to wood for uses in outdoor decking, a series of standardized physical, mechanical and chemical tests have been carried out on two commercial WPC materials: one with a polyvinyl chloride (PVC) - PVC matrix and rice husk filler and a second one with a polyethylene (PE) - PE matrix and pine wood reinforcement. Mechanical, thermal and ageing behaviour of these commercial WPC has been broadly studied. This research provides value information to find out which WPC material best support durability aspects, those that most concern in an architectural application of outdoor decking. In general terms, WPC developed by PVC matrix and rice husk as filler shown greater physical-mechanical properties, better resistance to chemical agents and greater resistance to ageing behaviour and changes in visual aspect. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Journal of Thermoplastic Composite Materials es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Composite es_ES
dc.subject Polymer es_ES
dc.subject Fibre reinforcement es_ES
dc.subject Mixture proportion es_ES
dc.subject Weathering es_ES
dc.subject.classification CONSTRUCCIONES ARQUITECTONICAS es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/0892705718807956 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Vercher Sanchis, J.; Fombuena, V.; Díaz, A.; Soriano Cubells, MJ. (2020). Influence of fibre and matrix characteristics on properties and durability of wood-plastic composites in outdoor applications. Journal of Thermoplastic Composite Materials. 33(4):477-500. https://doi.org/10.1177/0892705718807956 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/0892705718807956 es_ES
dc.description.upvformatpinicio 477 es_ES
dc.description.upvformatpfin 500 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\406753 es_ES
dc.description.references Arenas FJ. El impacto ambiental en la edificación. Criterios para una edificación sostenible, 1st ed. Madrid: Edisofer, 2007, p. 248. es_ES
dc.description.references Miravete A. Los nuevos materiales en la construcción, 1st ed. Barcelona: Reverté, 1995, p. 394. es_ES
dc.description.references Kaseem, M., Hamad, K., Deri, F., & Ko, Y. G. (2015). Material properties of polyethylene/wood composites: A review of recent works. Polymer Science Series A, 57(6), 689-703. doi:10.1134/s0965545x15070068 es_ES
dc.description.references Najafi, S. K., Hamidinia, E., & Tajvidi, M. (2006). Mechanical properties of composites from sawdust and recycled plastics. Journal of Applied Polymer Science, 100(5), 3641-3645. doi:10.1002/app.23159 es_ES
dc.description.references La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579-588. doi:10.1016/j.compositesa.2011.01.017 es_ES
dc.description.references Mahboob, Z., El Sawi, I., Zdero, R., Fawaz, Z., & Bougherara, H. (2017). Tensile and compressive damaged response in Flax fibre reinforced epoxy composites. Composites Part A: Applied Science and Manufacturing, 92, 118-133. doi:10.1016/j.compositesa.2016.11.007 es_ES
dc.description.references Paynel, F., Morvan, C., Marais, S., & Lebrun, L. (2013). Improvement of the hydrolytic stability of new flax-based biocomposite materials. Polymer Degradation and Stability, 98(1), 190-197. doi:10.1016/j.polymdegradstab.2012.10.010 es_ES
dc.description.references Badia, J. D., Kittikorn, T., Strömberg, E., Santonja-Blasco, L., Martínez-Felipe, A., Ribes-Greus, A., … Karlsson, S. (2014). Water absorption and hydrothermal performance of PHBV/sisal biocomposites. Polymer Degradation and Stability, 108, 166-174. doi:10.1016/j.polymdegradstab.2014.04.012 es_ES
dc.description.references Alvarez, V. A., & Vázquez, A. (2004). Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability, 84(1), 13-21. doi:10.1016/j.polymdegradstab.2003.09.003 es_ES
dc.description.references Liu, L., Yu, J., Cheng, L., & Yang, X. (2009). Biodegradability of poly(butylene succinate) (PBS) composite reinforced with jute fibre. Polymer Degradation and Stability, 94(1), 90-94. doi:10.1016/j.polymdegradstab.2008.10.013 es_ES
dc.description.references Valdés García, A., Ramos Santonja, M., Sanahuja, A. B., & Selva, M. del C. G. (2014). Characterization and degradation characteristics of poly(ε-caprolactone)-based composites reinforced with almond skin residues. Polymer Degradation and Stability, 108, 269-279. doi:10.1016/j.polymdegradstab.2014.03.011 es_ES
dc.description.references Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Recent developments in sugar palm ( Arenga pinnata ) based biocomposites and their potential industrial applications: A review. Renewable and Sustainable Energy Reviews, 54, 533-549. doi:10.1016/j.rser.2015.10.037 es_ES
dc.description.references Abdul Khalil, H. P. S., Bhat, I. U. H., Jawaid, M., Zaidon, A., Hermawan, D., & Hadi, Y. S. (2012). Bamboo fibre reinforced biocomposites: A review. Materials & Design, 42, 353-368. doi:10.1016/j.matdes.2012.06.015 es_ES
dc.description.references Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027 es_ES
dc.description.references Maciá, A., Baeza, F. J., Saval, J. M., & Ivorra, S. (2016). Mechanical properties of boards made in biocomposites reinforced with wood and Posidonia oceanica fibers. Composites Part B: Engineering, 104, 1-8. doi:10.1016/j.compositesb.2016.08.018 es_ES
dc.description.references Das, O., Bhattacharyya, D., Hui, D., & Lau, K.-T. (2016). Mechanical and flammability characterisations of biochar/polypropylene biocomposites. Composites Part B: Engineering, 106, 120-128. doi:10.1016/j.compositesb.2016.09.020 es_ES
dc.description.references Fowler, P. A., Hughes, J. M., & Elias, R. M. (2006). Biocomposites: technology, environmental credentials and market forces. Journal of the Science of Food and Agriculture, 86(12), 1781-1789. doi:10.1002/jsfa.2558 es_ES
dc.description.references Dányádi, L., Janecska, T., Szabó, Z., Nagy, G., Móczó, J., & Pukánszky, B. (2007). Wood flour filled PP composites: Compatibilization and adhesion. Composites Science and Technology, 67(13), 2838-2846. doi:10.1016/j.compscitech.2007.01.024 es_ES
dc.description.references Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. doi:10.1016/j.compositesa.2015.06.007 es_ES
dc.description.references Tascioglu, C., Tufan, M., Yalcin, M., & Sen, S. (2016). Determination of biological performance, dimensional stability, mechanical and thermal properties of wood–plastic composites produced from recycled chromated copper arsenate-treated wood. Journal of Thermoplastic Composite Materials, 29(11), 1461-1479. doi:10.1177/0892705714565704 es_ES
dc.description.references Bhaskar, J., Haq, S., & Yadaw, S. (2011). Evaluation and testing of mechanical properties of wood plastic composite. Journal of Thermoplastic Composite Materials, 25(4), 391-401. doi:10.1177/0892705711406158 es_ES
dc.description.references Friedrich, D., & Luible, A. (2016). Investigations on ageing of wood-plastic composites for outdoor applications: A meta-analysis using empiric data derived from diverse weathering trials. Construction and Building Materials, 124, 1142-1152. doi:10.1016/j.conbuildmat.2016.08.123 es_ES
dc.description.references Gourier, C., Bourmaud, A., Le Duigou, A., & Baley, C. (2017). Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fibre reinforced biocomposites. Polymer Degradation and Stability, 136, 1-9. doi:10.1016/j.polymdegradstab.2016.12.003 es_ES
dc.description.references Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98-112. doi:10.1016/j.compositesa.2015.08.038 es_ES
dc.description.references Muthuraj, R., Misra, M., Defersha, F., & Mohanty, A. K. (2016). Influence of processing parameters on the impact strength of biocomposites: A statistical approach. Composites Part A: Applied Science and Manufacturing, 83, 120-129. doi:10.1016/j.compositesa.2015.09.003 es_ES
dc.description.references Gil-Castell, O., Badia, J. D., Kittikorn, T., Strömberg, E., Martínez-Felipe, A., Ek, M., … Ribes-Greus, A. (2014). Hydrothermal ageing of polylactide/sisal biocomposites. Studies of water absorption behaviour and Physico-Chemical performance. Polymer Degradation and Stability, 108, 212-222. doi:10.1016/j.polymdegradstab.2014.06.010 es_ES
dc.description.references Campos, A., Marconcini, J. M., Martins-Franchetti, S. M., & Mattoso, L. H. C. (2012). The influence of UV-C irradiation on the properties of thermoplastic starch and polycaprolactone biocomposite with sisal bleached fibers. Polymer Degradation and Stability, 97(10), 1948-1955. doi:10.1016/j.polymdegradstab.2011.11.010 es_ES
dc.description.references Azwar, E., Vuorinen, E., & Hakkarainen, M. (2012). Pyrolysis-GC–MS reveals important differences in hydrolytic degradation process of wood flour and rice bran filled polylactide composites. Polymer Degradation and Stability, 97(3), 281-287. doi:10.1016/j.polymdegradstab.2011.12.017 es_ES
dc.description.references Soccalingame, L., Perrin, D., Bénézet, J.-C., Mani, S., Coiffier, F., Richaud, E., & Bergeret, A. (2015). Reprocessing of artificial UV-weathered wood flour reinforced polypropylene composites. Polymer Degradation and Stability, 120, 313-327. doi:10.1016/j.polymdegradstab.2015.07.013 es_ES
dc.description.references Soccalingame, L., Perrin, D., Bénézet, J.-C., & Bergeret, A. (2016). Reprocessing of UV-weathered wood flour reinforced polypropylene composites: Study of a natural outdoor exposure. Polymer Degradation and Stability, 133, 389-398. doi:10.1016/j.polymdegradstab.2016.09.011 es_ES
dc.description.references Azwa, Z. N., Yousif, B. F., Manalo, A. C., & Karunasena, W. (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design, 47, 424-442. doi:10.1016/j.matdes.2012.11.025 es_ES
dc.description.references Zabel RA, Morrell JJ. Wood microbiology: Decay and its prevention. Cambridge, MA: Academic Press, 2012, p. 498. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem