- -

On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations

Show full item record

Ferri García, M.; Bravo Plana-Sala, JM.; Redondo, J.; Jiménez-Gambín, S.; Jimenez, N.; Camarena Femenia, F.; Sánchez-Pérez, JV. (2019). On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations. Polymers. 11(9):1-25. https://doi.org/10.3390/polym11091521

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161841

Files in this item

Item Metadata

Title: On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations
Author: Ferri García, Marcelino Bravo Plana-Sala, José María Redondo, Javier Jiménez-Gambín, Sergio Jimenez, Noe Camarena Femenia, Francisco Sánchez-Pérez, Juan Vicente
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
Abstract:
[EN] The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission ...[+]
Subjects: Holograms , Acoustic Holograms , Holographic lenses , Transcranial propagation , 3D printed lenses , Focused ultrasound , Transcranial ultrasound , Single-element transducer , Transcranial therapy
Copyrigths: Reconocimiento (by)
Source:
Polymers. (eissn: 2073-4360 )
DOI: 10.3390/polym11091521
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/polym11091521
Project ID:
info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/
...[+]
info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/
info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/
info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/
info:eu-repo/grantAgreement/AVI//INNVA10%2F19%2F016/
[-]
Thanks:
This work was partially supported by the Spanish "Ministerio de Economia y Competitividad" under the projects RTI2018-096904-B-I00 and TEC2016-80976-R. N.J. and S.J. acknowledge financial support from Generalitat Valenciana ...[+]
Type: Artículo

References

Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118

Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418

Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553 [+]
Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118

Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418

Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553

Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437

Brown, M. D., Nikitichev, D. I., Treeby, B. E., & Cox, B. T. (2017). Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters, 110(9), 094102. doi:10.1063/1.4976942

Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037

Zhang, J., Yang, Y., Zhu, B., Li, X., Jin, J., Chen, Z., … Zhou, Q. (2018). Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Applied Physics Letters, 113(24), 243502. doi:10.1063/1.5058079

Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022

Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016

Clement, G. T., White, J., & Hynynen, K. (2000). Investigation of a large-area phased array for focused ultrasound surgery through the skull. Physics in Medicine and Biology, 45(4), 1071-1083. doi:10.1088/0031-9155/45/4/319

Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962

Burgess, A., Ayala-Grosso, C. A., Ganguly, M., Jordão, J. F., Aubert, I., & Hynynen, K. (2011). Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier. PLoS ONE, 6(11), e27877. doi:10.1371/journal.pone.0027877

Choi, J. J., Pernot, M., Small, S. A., & Konofagou, E. E. (2007). Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine & Biology, 33(1), 95-104. doi:10.1016/j.ultrasmedbio.2006.07.018

Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663

Jolesz, F. A., & McDannold, N. J. (2014). Magnetic Resonance–Guided Focused Ultrasound. Neurologic Clinics, 32(1), 253-269. doi:10.1016/j.ncl.2013.07.008

Fry, F. J., & Goss, S. A. (1980). Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound in Medicine & Biology, 6(1), 33-38. doi:10.1016/0301-5629(80)90061-7

Coluccia, D., Figueiredo, C. A., Wu, M. Y., Riemenschneider, A. N., Diaz, R., Luck, A., … Rutka, J. T. (2018). Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1137-1148. doi:10.1016/j.nano.2018.01.021

McDannold, N., Clement, G. T., Black, P., Jolesz, F., & Hynynen, K. (2010). Transcranial Magnetic Resonance Imaging– Guided Focused Ultrasound Surgery of Brain Tumors. Neurosurgery, 66(2), 323-332. doi:10.1227/01.neu.0000360379.95800.2f

Meng, Y., Volpini, M., Black, S., Lozano, A. M., Hynynen, K., & Lipsman, N. (2017). Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Annals of Neurology, 81(5), 611-617. doi:10.1002/ana.24933

Magara, A., Bühler, R., Moser, D., Kowalski, M., Pourtehrani, P., & Jeanmonod, D. (2014). First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. Journal of Therapeutic Ultrasound, 2(1). doi:10.1186/2050-5736-2-11

Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804

Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences, 103(31), 11719-11723. doi:10.1073/pnas.0604318103

Baseri, B., Choi, J. J., Deffieux, T., Samiotaki, G., Tung, Y.-S., Olumolade, O., … Konofagou, E. E. (2012). Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 57(7), N65-N81. doi:10.1088/0031-9155/57/7/n65

Alonso, A., Reinz, E., Leuchs, B., Kleinschmidt, J., Fatar, M., Geers, B., … Meairs, S. (2013). Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening. Molecular Therapy - Nucleic Acids, 2, e73. doi:10.1038/mtna.2012.64

Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G., & Konofagou, E. E. (2014). Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Therapy, 22(1), 104-110. doi:10.1038/gt.2014.91

Guthkelch, A. N., Carter, L. P., Cassady, J. R., Hynynen, K. H., Iacono, R. P., Johnson, P. C., … Steal, B. (1991). Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. Journal of Neuro-Oncology, 10(3). doi:10.1007/bf00177540

Marquet, F., Tung, Y.-S., Teichert, T., Ferrera, V. P., & Konofagou, E. E. (2012). Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening. doi:10.1063/1.4757340

Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055

Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383

Clement, G. T., & Hynynen, K. (2002). A non-invasive method for focusing ultrasound through the human skull. Physics in Medicine and Biology, 47(8), 1219-1236. doi:10.1088/0031-9155/47/8/301

Marsac, L., Chauvet, D., La Greca, R., Boch, A.-L., Chaumoitre, K., Tanter, M., & Aubry, J.-F. (2017). Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz. International Journal of Hyperthermia, 33(6), 635-645. doi:10.1080/02656736.2017.1295322

Pichardo, S., Sin, V. W., & Hynynen, K. (2010). Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Physics in Medicine and Biology, 56(1), 219-250. doi:10.1088/0031-9155/56/1/014

Connor, C. W., & Hynynen, K. (2004). Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Transactions on Biomedical Engineering, 51(10), 1693-1706. doi:10.1109/tbme.2004.831516

Connor, C. W., Clement, G. T., & Hynynen, K. (2002). A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Physics in Medicine and Biology, 47(22), 3925-3944. doi:10.1088/0031-9155/47/22/302

Clement, G. T., White, P. J., & Hynynen, K. (2004). Enhanced ultrasound transmission through the human skull using shear mode conversion. The Journal of the Acoustical Society of America, 115(3), 1356-1364. doi:10.1121/1.1645610

Pinton, G., Aubry, J.-F., Bossy, E., Muller, M., Pernot, M., & Tanter, M. (2011). Attenuation, scattering, and absorption of ultrasound in the skull bone. Medical Physics, 39(1), 299-307. doi:10.1118/1.3668316

Hughes, A., Huang, Y., Pulkkinen, A., Schwartz, M. L., Lozano, A. M., & Hynynen, K. (2016). A numerical study on the oblique focus in MR-guided transcranial focused ultrasound. Physics in Medicine and Biology, 61(22), 8025-8043. doi:10.1088/0031-9155/61/22/8025

Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002

ULTEM 1010 ® Resinhttp://www.webcitation.org/78VUOqfiz

Properties of Selected Fibreshttp://www.webcitation.org/78VWv9U9W

Fused Deposition Modeling Materialshttp://www.webcitation.org/78VWYf9fE

3DXTECH Advanced Materials. Tech Data Sheets & SDShttp://www.webcitation.org/78VW28G0R

The Material Selection Platform. Young’s Modulushttp://www.webcitation.org/78VWuJN2A

Burr, G. W., & Farjadpour, A. (2005). Balancing accuracy against computation time: 3D FDTD for nanophotonics device optimization. Photonic Crystal Materials and Devices III. doi:10.1117/12.590732

Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., & Sapozhnikov, O. A. (2008). Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. The Journal of the Acoustical Society of America, 124(4), 2406-2420. doi:10.1121/1.2967836

O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542

Ultrasonic Test Equipment. HIGH Z Ultrasonic Couplanthttp://www.webcitation.org/78VUxlDeY

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record