Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118
Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418
Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553
[+]
Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118
Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418
Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553
Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437
Brown, M. D., Nikitichev, D. I., Treeby, B. E., & Cox, B. T. (2017). Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters, 110(9), 094102. doi:10.1063/1.4976942
Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037
Zhang, J., Yang, Y., Zhu, B., Li, X., Jin, J., Chen, Z., … Zhou, Q. (2018). Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Applied Physics Letters, 113(24), 243502. doi:10.1063/1.5058079
Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022
Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016
Clement, G. T., White, J., & Hynynen, K. (2000). Investigation of a large-area phased array for focused ultrasound surgery through the skull. Physics in Medicine and Biology, 45(4), 1071-1083. doi:10.1088/0031-9155/45/4/319
Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962
Burgess, A., Ayala-Grosso, C. A., Ganguly, M., Jordão, J. F., Aubert, I., & Hynynen, K. (2011). Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier. PLoS ONE, 6(11), e27877. doi:10.1371/journal.pone.0027877
Choi, J. J., Pernot, M., Small, S. A., & Konofagou, E. E. (2007). Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine & Biology, 33(1), 95-104. doi:10.1016/j.ultrasmedbio.2006.07.018
Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663
Jolesz, F. A., & McDannold, N. J. (2014). Magnetic Resonance–Guided Focused Ultrasound. Neurologic Clinics, 32(1), 253-269. doi:10.1016/j.ncl.2013.07.008
Fry, F. J., & Goss, S. A. (1980). Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound in Medicine & Biology, 6(1), 33-38. doi:10.1016/0301-5629(80)90061-7
Coluccia, D., Figueiredo, C. A., Wu, M. Y., Riemenschneider, A. N., Diaz, R., Luck, A., … Rutka, J. T. (2018). Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1137-1148. doi:10.1016/j.nano.2018.01.021
McDannold, N., Clement, G. T., Black, P., Jolesz, F., & Hynynen, K. (2010). Transcranial Magnetic Resonance Imaging– Guided Focused Ultrasound Surgery of Brain Tumors. Neurosurgery, 66(2), 323-332. doi:10.1227/01.neu.0000360379.95800.2f
Meng, Y., Volpini, M., Black, S., Lozano, A. M., Hynynen, K., & Lipsman, N. (2017). Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Annals of Neurology, 81(5), 611-617. doi:10.1002/ana.24933
Magara, A., Bühler, R., Moser, D., Kowalski, M., Pourtehrani, P., & Jeanmonod, D. (2014). First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. Journal of Therapeutic Ultrasound, 2(1). doi:10.1186/2050-5736-2-11
Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804
Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences, 103(31), 11719-11723. doi:10.1073/pnas.0604318103
Baseri, B., Choi, J. J., Deffieux, T., Samiotaki, G., Tung, Y.-S., Olumolade, O., … Konofagou, E. E. (2012). Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 57(7), N65-N81. doi:10.1088/0031-9155/57/7/n65
Alonso, A., Reinz, E., Leuchs, B., Kleinschmidt, J., Fatar, M., Geers, B., … Meairs, S. (2013). Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening. Molecular Therapy - Nucleic Acids, 2, e73. doi:10.1038/mtna.2012.64
Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G., & Konofagou, E. E. (2014). Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Therapy, 22(1), 104-110. doi:10.1038/gt.2014.91
Guthkelch, A. N., Carter, L. P., Cassady, J. R., Hynynen, K. H., Iacono, R. P., Johnson, P. C., … Steal, B. (1991). Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. Journal of Neuro-Oncology, 10(3). doi:10.1007/bf00177540
Marquet, F., Tung, Y.-S., Teichert, T., Ferrera, V. P., & Konofagou, E. E. (2012). Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening. doi:10.1063/1.4757340
Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055
Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383
Clement, G. T., & Hynynen, K. (2002). A non-invasive method for focusing ultrasound through the human skull. Physics in Medicine and Biology, 47(8), 1219-1236. doi:10.1088/0031-9155/47/8/301
Marsac, L., Chauvet, D., La Greca, R., Boch, A.-L., Chaumoitre, K., Tanter, M., & Aubry, J.-F. (2017). Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz. International Journal of Hyperthermia, 33(6), 635-645. doi:10.1080/02656736.2017.1295322
Pichardo, S., Sin, V. W., & Hynynen, K. (2010). Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Physics in Medicine and Biology, 56(1), 219-250. doi:10.1088/0031-9155/56/1/014
Connor, C. W., & Hynynen, K. (2004). Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Transactions on Biomedical Engineering, 51(10), 1693-1706. doi:10.1109/tbme.2004.831516
Connor, C. W., Clement, G. T., & Hynynen, K. (2002). A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Physics in Medicine and Biology, 47(22), 3925-3944. doi:10.1088/0031-9155/47/22/302
Clement, G. T., White, P. J., & Hynynen, K. (2004). Enhanced ultrasound transmission through the human skull using shear mode conversion. The Journal of the Acoustical Society of America, 115(3), 1356-1364. doi:10.1121/1.1645610
Pinton, G., Aubry, J.-F., Bossy, E., Muller, M., Pernot, M., & Tanter, M. (2011). Attenuation, scattering, and absorption of ultrasound in the skull bone. Medical Physics, 39(1), 299-307. doi:10.1118/1.3668316
Hughes, A., Huang, Y., Pulkkinen, A., Schwartz, M. L., Lozano, A. M., & Hynynen, K. (2016). A numerical study on the oblique focus in MR-guided transcranial focused ultrasound. Physics in Medicine and Biology, 61(22), 8025-8043. doi:10.1088/0031-9155/61/22/8025
Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002
ULTEM 1010 ® Resinhttp://www.webcitation.org/78VUOqfiz
Properties of Selected Fibreshttp://www.webcitation.org/78VWv9U9W
Fused Deposition Modeling Materialshttp://www.webcitation.org/78VWYf9fE
3DXTECH Advanced Materials. Tech Data Sheets & SDShttp://www.webcitation.org/78VW28G0R
The Material Selection Platform. Young’s Modulushttp://www.webcitation.org/78VWuJN2A
Burr, G. W., & Farjadpour, A. (2005). Balancing accuracy against computation time: 3D FDTD for nanophotonics device optimization. Photonic Crystal Materials and Devices III. doi:10.1117/12.590732
Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., & Sapozhnikov, O. A. (2008). Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. The Journal of the Acoustical Society of America, 124(4), 2406-2420. doi:10.1121/1.2967836
O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542
Ultrasonic Test Equipment. HIGH Z Ultrasonic Couplanthttp://www.webcitation.org/78VUxlDeY
[-]