- -

On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations

Show simple item record

Files in this item

dc.contributor.author Ferri García, Marcelino es_ES
dc.contributor.author Bravo Plana-Sala, José María es_ES
dc.contributor.author Redondo, Javier es_ES
dc.contributor.author Jiménez-Gambín, Sergio es_ES
dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Camarena Femenia, Francisco es_ES
dc.contributor.author Sánchez-Pérez, Juan Vicente es_ES
dc.date.accessioned 2021-02-19T04:33:24Z
dc.date.available 2021-02-19T04:33:24Z
dc.date.issued 2019-09 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161841
dc.description.abstract [EN] The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic acoustic lenses, has recently been proposed, overcoming the spatial limitations of phased arrays due to the submillimetric precision of the latest generation of 3D printers. This work aims to optimize this recent solution. Particularly, the preferred acoustic properties of the polymers used for printing the lenses are systematically analyzed, paying special attention to the effect of p-wave speed and its relationship to the achievable voxel size of 3D printers. Results from simulations and experiments clearly show that, given a particular voxel size, there are optimal ranges for lens thickness and p-wave speed, fairly independent of the emitted frequency, the transducer aperture, or the transducer-target distance. es_ES
dc.description.sponsorship This work was partially supported by the Spanish "Ministerio de Economia y Competitividad" under the projects RTI2018-096904-B-I00 and TEC2016-80976-R. N.J. and S.J. acknowledge financial support from Generalitat Valenciana through Grants No. APOSTD/2017/042, No. ACIF/2017/045, and No. GV/2018/11. F.C. acknowledges financial support from Agencia Valenciana de la Innovacio through Grants No. INNCON00/18/9 and INNVAL10/19/016 and Generalitat Valenciana and European Regional Development Fund (Grant No. IDIFEDER/2018/022). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Polymers es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Holograms es_ES
dc.subject Acoustic Holograms es_ES
dc.subject Holographic lenses es_ES
dc.subject Transcranial propagation es_ES
dc.subject 3D printed lenses es_ES
dc.subject Focused ultrasound es_ES
dc.subject Transcranial ultrasound es_ES
dc.subject Single-element transducer es_ES
dc.subject Transcranial therapy es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/polym11091521 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2018%2F011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F042/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2016-80976-R/ES/CONTROL DE NANOPARTICULAS MAGNETICAS PARA TERAPIA GUIADA POR IMAGEN/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F045/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F022/ES/EQUIPOS PARA TECNICAS MIXTAS ELECTROMAGNETICAS-ULTRASONICAS PARA IMAGEN MEDICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNCON00%2F18%2F9/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096904-B-I00/ES/HERRAMIENTAS DE OPTIMIZACION MULTIOBJETIVO PARA LA CARACTERIZACION Y ANALISIS DE CONCEPTOS DE DISEÑO Y SOLUCIONES SUB-OPTIMAS EFICIENTES EN PROBLEMAS DE INGENIERIA DE SISTEMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AVI//INNVA10%2F19%2F016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Ferri García, M.; Bravo Plana-Sala, JM.; Redondo, J.; Jiménez-Gambín, S.; Jimenez, N.; Camarena Femenia, F.; Sánchez-Pérez, JV. (2019). On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations. Polymers. 11(9):1-25. https://doi.org/10.3390/polym11091521 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/polym11091521 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 2073-4360 es_ES
dc.identifier.pmid 31546807 es_ES
dc.identifier.pmcid PMC6780887 es_ES
dc.relation.pasarela S\394052 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agència Valenciana de la Innovació es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118 es_ES
dc.description.references Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418 es_ES
dc.description.references Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553 es_ES
dc.description.references Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437 es_ES
dc.description.references Brown, M. D., Nikitichev, D. I., Treeby, B. E., & Cox, B. T. (2017). Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters, 110(9), 094102. doi:10.1063/1.4976942 es_ES
dc.description.references Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037 es_ES
dc.description.references Zhang, J., Yang, Y., Zhu, B., Li, X., Jin, J., Chen, Z., … Zhou, Q. (2018). Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Applied Physics Letters, 113(24), 243502. doi:10.1063/1.5058079 es_ES
dc.description.references Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022 es_ES
dc.description.references Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016 es_ES
dc.description.references Clement, G. T., White, J., & Hynynen, K. (2000). Investigation of a large-area phased array for focused ultrasound surgery through the skull. Physics in Medicine and Biology, 45(4), 1071-1083. doi:10.1088/0031-9155/45/4/319 es_ES
dc.description.references Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962 es_ES
dc.description.references Burgess, A., Ayala-Grosso, C. A., Ganguly, M., Jordão, J. F., Aubert, I., & Hynynen, K. (2011). Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier. PLoS ONE, 6(11), e27877. doi:10.1371/journal.pone.0027877 es_ES
dc.description.references Choi, J. J., Pernot, M., Small, S. A., & Konofagou, E. E. (2007). Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine & Biology, 33(1), 95-104. doi:10.1016/j.ultrasmedbio.2006.07.018 es_ES
dc.description.references Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663 es_ES
dc.description.references Jolesz, F. A., & McDannold, N. J. (2014). Magnetic Resonance–Guided Focused Ultrasound. Neurologic Clinics, 32(1), 253-269. doi:10.1016/j.ncl.2013.07.008 es_ES
dc.description.references Fry, F. J., & Goss, S. A. (1980). Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound in Medicine & Biology, 6(1), 33-38. doi:10.1016/0301-5629(80)90061-7 es_ES
dc.description.references Coluccia, D., Figueiredo, C. A., Wu, M. Y., Riemenschneider, A. N., Diaz, R., Luck, A., … Rutka, J. T. (2018). Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1137-1148. doi:10.1016/j.nano.2018.01.021 es_ES
dc.description.references McDannold, N., Clement, G. T., Black, P., Jolesz, F., & Hynynen, K. (2010). Transcranial Magnetic Resonance Imaging– Guided Focused Ultrasound Surgery of Brain Tumors. Neurosurgery, 66(2), 323-332. doi:10.1227/01.neu.0000360379.95800.2f es_ES
dc.description.references Meng, Y., Volpini, M., Black, S., Lozano, A. M., Hynynen, K., & Lipsman, N. (2017). Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Annals of Neurology, 81(5), 611-617. doi:10.1002/ana.24933 es_ES
dc.description.references Magara, A., Bühler, R., Moser, D., Kowalski, M., Pourtehrani, P., & Jeanmonod, D. (2014). First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. Journal of Therapeutic Ultrasound, 2(1). doi:10.1186/2050-5736-2-11 es_ES
dc.description.references Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804 es_ES
dc.description.references Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences, 103(31), 11719-11723. doi:10.1073/pnas.0604318103 es_ES
dc.description.references Baseri, B., Choi, J. J., Deffieux, T., Samiotaki, G., Tung, Y.-S., Olumolade, O., … Konofagou, E. E. (2012). Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 57(7), N65-N81. doi:10.1088/0031-9155/57/7/n65 es_ES
dc.description.references Alonso, A., Reinz, E., Leuchs, B., Kleinschmidt, J., Fatar, M., Geers, B., … Meairs, S. (2013). Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening. Molecular Therapy - Nucleic Acids, 2, e73. doi:10.1038/mtna.2012.64 es_ES
dc.description.references Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G., & Konofagou, E. E. (2014). Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Therapy, 22(1), 104-110. doi:10.1038/gt.2014.91 es_ES
dc.description.references Guthkelch, A. N., Carter, L. P., Cassady, J. R., Hynynen, K. H., Iacono, R. P., Johnson, P. C., … Steal, B. (1991). Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. Journal of Neuro-Oncology, 10(3). doi:10.1007/bf00177540 es_ES
dc.description.references Marquet, F., Tung, Y.-S., Teichert, T., Ferrera, V. P., & Konofagou, E. E. (2012). Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening. doi:10.1063/1.4757340 es_ES
dc.description.references Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055 es_ES
dc.description.references Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383 es_ES
dc.description.references Clement, G. T., & Hynynen, K. (2002). A non-invasive method for focusing ultrasound through the human skull. Physics in Medicine and Biology, 47(8), 1219-1236. doi:10.1088/0031-9155/47/8/301 es_ES
dc.description.references Marsac, L., Chauvet, D., La Greca, R., Boch, A.-L., Chaumoitre, K., Tanter, M., & Aubry, J.-F. (2017). Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz. International Journal of Hyperthermia, 33(6), 635-645. doi:10.1080/02656736.2017.1295322 es_ES
dc.description.references Pichardo, S., Sin, V. W., & Hynynen, K. (2010). Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Physics in Medicine and Biology, 56(1), 219-250. doi:10.1088/0031-9155/56/1/014 es_ES
dc.description.references Connor, C. W., & Hynynen, K. (2004). Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Transactions on Biomedical Engineering, 51(10), 1693-1706. doi:10.1109/tbme.2004.831516 es_ES
dc.description.references Connor, C. W., Clement, G. T., & Hynynen, K. (2002). A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Physics in Medicine and Biology, 47(22), 3925-3944. doi:10.1088/0031-9155/47/22/302 es_ES
dc.description.references Clement, G. T., White, P. J., & Hynynen, K. (2004). Enhanced ultrasound transmission through the human skull using shear mode conversion. The Journal of the Acoustical Society of America, 115(3), 1356-1364. doi:10.1121/1.1645610 es_ES
dc.description.references Pinton, G., Aubry, J.-F., Bossy, E., Muller, M., Pernot, M., & Tanter, M. (2011). Attenuation, scattering, and absorption of ultrasound in the skull bone. Medical Physics, 39(1), 299-307. doi:10.1118/1.3668316 es_ES
dc.description.references Hughes, A., Huang, Y., Pulkkinen, A., Schwartz, M. L., Lozano, A. M., & Hynynen, K. (2016). A numerical study on the oblique focus in MR-guided transcranial focused ultrasound. Physics in Medicine and Biology, 61(22), 8025-8043. doi:10.1088/0031-9155/61/22/8025 es_ES
dc.description.references Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002 es_ES
dc.description.references ULTEM 1010 ® Resinhttp://www.webcitation.org/78VUOqfiz es_ES
dc.description.references Properties of Selected Fibreshttp://www.webcitation.org/78VWv9U9W es_ES
dc.description.references Fused Deposition Modeling Materialshttp://www.webcitation.org/78VWYf9fE es_ES
dc.description.references 3DXTECH Advanced Materials. Tech Data Sheets & SDShttp://www.webcitation.org/78VW28G0R es_ES
dc.description.references The Material Selection Platform. Young’s Modulushttp://www.webcitation.org/78VWuJN2A es_ES
dc.description.references Burr, G. W., & Farjadpour, A. (2005). Balancing accuracy against computation time: 3D FDTD for nanophotonics device optimization. Photonic Crystal Materials and Devices III. doi:10.1117/12.590732 es_ES
dc.description.references Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., & Sapozhnikov, O. A. (2008). Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. The Journal of the Acoustical Society of America, 124(4), 2406-2420. doi:10.1121/1.2967836 es_ES
dc.description.references O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542 es_ES
dc.description.references Ultrasonic Test Equipment. HIGH Z Ultrasonic Couplanthttp://www.webcitation.org/78VUxlDeY es_ES


This item appears in the following Collection(s)

Show simple item record