- -

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

Mostrar el registro completo del ítem

Robles Martínez, Á.; Capson-Tojo, G.; Gales, A.; Ruano, MV.; Sialve, B.; Ferrer, J.; Steyer, J. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management. 261:1-11. https://doi.org/10.1016/j.jenvman.2020.110244

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161844

Ficheros en el ítem

Metadatos del ítem

Título: Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions
Autor: Robles Martínez, Ángel Capson-Tojo, Gabriel Gales, Amandine Ruano, María Victoria Sialve, Bruno FERRER, J. Steyer, Jean-Philippe
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding ...[+]
Palabras clave: Open ponds , Domestic wastewater , Monitoring , Single-stage treatment
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Journal of Environmental Management. (issn: 0301-4797 )
DOI: 10.1016/j.jenvman.2020.110244
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.jenvman.2020.110244
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
...[+]
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/
info:eu-repo/grantAgreement/ANR//ANR-14-CE04-0011 /FR/Sustainable microalgal production by recycling phosphorus and nitrogen from wastewaters : toward a next generation of sewage treatment plant/Phycover/
info:eu-repo/grantAgreement/Xunta de Galicia//ED481B-2018%2F017/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/
info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/
info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/
[-]
Agradecimientos:
The authors acknowledge the financial support of the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011), the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM ...[+]
Tipo: Artículo

References

Fernández, F. G. A., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55(5), 701-714. doi:10.1002/(sici)1097-0290(19970905)55:5<701::aid-bit1>3.0.co;2-f

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 [+]
Fernández, F. G. A., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55(5), 701-714. doi:10.1002/(sici)1097-0290(19970905)55:5<701::aid-bit1>3.0.co;2-f

Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206

Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089

Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032

Berenguel, M., Rodrı́guez, F., Acién, F. G., & Garcı́a, J. L. (2004). Model predictive control of pH in tubular photobioreactors. Journal of Process Control, 14(4), 377-387. doi:10.1016/j.jprocont.2003.07.001

Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73(6), 1259-1266. doi:10.1007/s00253-006-0598-9

Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925-5933. doi:10.1016/j.watres.2011.08.044

Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., … Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. doi:10.1016/j.wasman.2017.09.002

Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660-665. doi:10.2166/wst.2011.100

Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., & Ergas, S. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 9(1), 2. doi:10.1186/2046-9063-9-2

De Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., & Acién, F. G. (2016). Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control, 37, 58-69. doi:10.1016/j.jprocont.2015.10.001

Esposito, S., Cafiero, A., Giannino, F., Mazzoleni, S., & Diano, M. M. (2017). A Monitoring, Modeling and Decision Support System (DSS) for a Microalgae Production Plant based on Internet of Things Structure. Procedia Computer Science, 113, 519-524. doi:10.1016/j.procs.2017.08.316

Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893-913. doi:10.1016/j.rser.2017.05.199

Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026

Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021

Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178

Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508

González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010

González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126

Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33(7), 207-217. doi:10.2166/wst.1996.0140

Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005

Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J.-W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. doi:10.1016/j.rser.2015.06.033

Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., & Bernard, O. (2009). Life-Cycle Assessment of Biodiesel Production from Microalgae. Environmental Science & Technology, 43(17), 6475-6481. doi:10.1021/es900705j

Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H.-Q., … Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127-1137. doi:10.1016/j.biortech.2017.06.054

Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425-437. doi:10.1016/j.algal.2016.10.026

Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:10.1016/j.rser.2009.07.020

Mohd Udaiyappan, A. F., Abu Hasan, H., Takriff, M. S., & Sheikh Abdullah, S. R. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21. doi:10.1016/j.jwpe.2017.09.006

Muñoz-Tamayo, R., Mairet, F., & Bernard, O. (2013). Optimizing microalgal production in raceway systems. Biotechnology Progress, 29(2), 543-552. doi:10.1002/btpr.1699

Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033

Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433. doi:10.1016/j.algal.2019.101433

Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42. doi:10.1016/j.biortech.2010.06.158

Romero Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2017). Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Research, 25, 538-548. doi:10.1016/j.algal.2017.06.016

Solimeno, A., Acíen, F. G., & García, J. (2017). Mechanistic model for design, analysis, operation and control of microalgae cultures: Calibration and application to tubular photobioreactors. Algal Research, 21, 236-246. doi:10.1016/j.algal.2016.11.023

Solimeno, A., Parker, L., Lundquist, T., & García, J. (2017). Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Science of The Total Environment, 601-602, 646-657. doi:10.1016/j.scitotenv.2017.05.215

Tran, K. C., Mendoza Martin, J. L., Heaven, S., Banks, C. J., Acien Fernandez, F. G., & Molina Grima, E. (2014). Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Research, 5, 95-102. doi:10.1016/j.algal.2014.06.001

Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J.-P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119-125. doi:10.1016/j.algal.2015.08.011

Uggetti, E., Sialve, B., Latrille, E., & Steyer, J.-P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437-443. doi:10.1016/j.biortech.2013.11.036

Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021-4028. doi:10.1016/j.biortech.2007.01.046

Vasumathi, K. K., Premalatha, M., & Subramanian, P. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16(7), 5443-5450. doi:10.1016/j.rser.2012.06.013

Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223

Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., … Chang, J.-S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. doi:10.1016/j.biortech.2015.09.067

Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., … Chang, J.-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497. doi:10.1016/j.biortech.2016.09.106

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem