- -

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Robles Martínez, Ángel es_ES
dc.contributor.author Capson-Tojo, Gabriel es_ES
dc.contributor.author Gales, Amandine es_ES
dc.contributor.author Ruano, María Victoria es_ES
dc.contributor.author Sialve, Bruno es_ES
dc.contributor.author FERRER, J. es_ES
dc.contributor.author Steyer, Jean-Philippe es_ES
dc.date.accessioned 2021-02-19T04:33:31Z
dc.date.available 2021-02-19T04:33:31Z
dc.date.issued 2020-05-01 es_ES
dc.identifier.issn 0301-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161844
dc.description.abstract [EN] On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 suggest that the minimum time for establishing a performant bacteria-microalgae consortium could be of around one month for non-inoculated systems. At this point, the process was fully functional, meeting the European discharge limits for protected areas. The results of the statistical analyses show that both the pH and the dissolved oxygen concentration represent accurately the biochemical processes taking place under the start-up of the process. Both pH and dissolved oxygen represented accurately also the performance of the high-rate algal pond, being affordable, easily-implemented, options for monitoring, control and optimization of industrial-scale processes. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011), the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM 2014-54980-C2-1-R and CTM 2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), and the European Climate KIC association for the "MAB 2.0" project (APIN0057_2015-3.6-230_P066-05). Angel Robles would also like to acknowledge the financial aid received from Generalitat Valenciana via a VALi d post-doctoral grant (APOSTD/2014/049). Gabriel Capson-Tojo is grateful to the Xunta de Galicia for his postdoctoral fellowship (ED481B-2018/017). es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Environmental Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Open ponds es_ES
dc.subject Domestic wastewater es_ES
dc.subject Monitoring es_ES
dc.subject Single-stage treatment es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.title Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jenvman.2020.110244 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-14-CE04-0011 /FR/Sustainable microalgal production by recycling phosphorus and nitrogen from wastewaters : toward a next generation of sewage treatment plant/Phycover/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Xunta de Galicia//ED481B-2018%2F017/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Robles Martínez, Á.; Capson-Tojo, G.; Gales, A.; Ruano, MV.; Sialve, B.; Ferrer, J.; Steyer, J. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management. 261:1-11. https://doi.org/10.1016/j.jenvman.2020.110244 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jenvman.2020.110244 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 261 es_ES
dc.identifier.pmid 32148311 es_ES
dc.relation.pasarela S\421277 es_ES
dc.contributor.funder Xunta de Galicia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder EIT Climate-KIC es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.description.references Fernández, F. G. A., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55(5), 701-714. doi:10.1002/(sici)1097-0290(19970905)55:5<701::aid-bit1>3.0.co;2-f es_ES
dc.description.references Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 es_ES
dc.description.references Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 es_ES
dc.description.references Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032 es_ES
dc.description.references Berenguel, M., Rodrı́guez, F., Acién, F. G., & Garcı́a, J. L. (2004). Model predictive control of pH in tubular photobioreactors. Journal of Process Control, 14(4), 377-387. doi:10.1016/j.jprocont.2003.07.001 es_ES
dc.description.references Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73(6), 1259-1266. doi:10.1007/s00253-006-0598-9 es_ES
dc.description.references Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925-5933. doi:10.1016/j.watres.2011.08.044 es_ES
dc.description.references Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., … Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. doi:10.1016/j.wasman.2017.09.002 es_ES
dc.description.references Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660-665. doi:10.2166/wst.2011.100 es_ES
dc.description.references Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., & Ergas, S. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 9(1), 2. doi:10.1186/2046-9063-9-2 es_ES
dc.description.references De Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., & Acién, F. G. (2016). Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control, 37, 58-69. doi:10.1016/j.jprocont.2015.10.001 es_ES
dc.description.references Esposito, S., Cafiero, A., Giannino, F., Mazzoleni, S., & Diano, M. M. (2017). A Monitoring, Modeling and Decision Support System (DSS) for a Microalgae Production Plant based on Internet of Things Structure. Procedia Computer Science, 113, 519-524. doi:10.1016/j.procs.2017.08.316 es_ES
dc.description.references Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893-913. doi:10.1016/j.rser.2017.05.199 es_ES
dc.description.references Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 es_ES
dc.description.references Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021 es_ES
dc.description.references Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 es_ES
dc.description.references Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 es_ES
dc.description.references González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 es_ES
dc.description.references González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 es_ES
dc.description.references Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33(7), 207-217. doi:10.2166/wst.1996.0140 es_ES
dc.description.references Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005 es_ES
dc.description.references Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J.-W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. doi:10.1016/j.rser.2015.06.033 es_ES
dc.description.references Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., & Bernard, O. (2009). Life-Cycle Assessment of Biodiesel Production from Microalgae. Environmental Science & Technology, 43(17), 6475-6481. doi:10.1021/es900705j es_ES
dc.description.references Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H.-Q., … Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127-1137. doi:10.1016/j.biortech.2017.06.054 es_ES
dc.description.references Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425-437. doi:10.1016/j.algal.2016.10.026 es_ES
dc.description.references Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:10.1016/j.rser.2009.07.020 es_ES
dc.description.references Mohd Udaiyappan, A. F., Abu Hasan, H., Takriff, M. S., & Sheikh Abdullah, S. R. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21. doi:10.1016/j.jwpe.2017.09.006 es_ES
dc.description.references Muñoz-Tamayo, R., Mairet, F., & Bernard, O. (2013). Optimizing microalgal production in raceway systems. Biotechnology Progress, 29(2), 543-552. doi:10.1002/btpr.1699 es_ES
dc.description.references Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033 es_ES
dc.description.references Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433. doi:10.1016/j.algal.2019.101433 es_ES
dc.description.references Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42. doi:10.1016/j.biortech.2010.06.158 es_ES
dc.description.references Romero Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2017). Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Research, 25, 538-548. doi:10.1016/j.algal.2017.06.016 es_ES
dc.description.references Solimeno, A., Acíen, F. G., & García, J. (2017). Mechanistic model for design, analysis, operation and control of microalgae cultures: Calibration and application to tubular photobioreactors. Algal Research, 21, 236-246. doi:10.1016/j.algal.2016.11.023 es_ES
dc.description.references Solimeno, A., Parker, L., Lundquist, T., & García, J. (2017). Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Science of The Total Environment, 601-602, 646-657. doi:10.1016/j.scitotenv.2017.05.215 es_ES
dc.description.references Tran, K. C., Mendoza Martin, J. L., Heaven, S., Banks, C. J., Acien Fernandez, F. G., & Molina Grima, E. (2014). Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Research, 5, 95-102. doi:10.1016/j.algal.2014.06.001 es_ES
dc.description.references Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J.-P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119-125. doi:10.1016/j.algal.2015.08.011 es_ES
dc.description.references Uggetti, E., Sialve, B., Latrille, E., & Steyer, J.-P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437-443. doi:10.1016/j.biortech.2013.11.036 es_ES
dc.description.references Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021-4028. doi:10.1016/j.biortech.2007.01.046 es_ES
dc.description.references Vasumathi, K. K., Premalatha, M., & Subramanian, P. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16(7), 5443-5450. doi:10.1016/j.rser.2012.06.013 es_ES
dc.description.references Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 es_ES
dc.description.references Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., … Chang, J.-S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. doi:10.1016/j.biortech.2015.09.067 es_ES
dc.description.references Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., … Chang, J.-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497. doi:10.1016/j.biortech.2016.09.106 es_ES
dc.description.references Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9 es_ES
dc.description.references Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem