Mostrar el registro sencillo del ítem
dc.contributor.author | Robles Martínez, Ángel | es_ES |
dc.contributor.author | Capson-Tojo, Gabriel | es_ES |
dc.contributor.author | Gales, Amandine | es_ES |
dc.contributor.author | Ruano, María Victoria | es_ES |
dc.contributor.author | Sialve, Bruno | es_ES |
dc.contributor.author | FERRER, J. | es_ES |
dc.contributor.author | Steyer, Jean-Philippe | es_ES |
dc.date.accessioned | 2021-02-19T04:33:31Z | |
dc.date.available | 2021-02-19T04:33:31Z | |
dc.date.issued | 2020-05-01 | es_ES |
dc.identifier.issn | 0301-4797 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161844 | |
dc.description.abstract | [EN] On-line performance indicators of a microalgae-bacteria consortium were screened out from different variables based on pH and dissolved oxygen on-line measurements via multivariate projection analysis, aiming at finding on-line key state indicators to easily monitor the process. To fulfil this objective, a pilot-scale high-rate pond for urban wastewater treatment was evaluated under highly variable conditions, i.e. during the start-up period. The system was started-up without seed of either bacterial or microalgal biomass. It took around 19 days to fully develop a microalgal community assimilating nutrients significantly. Slight increases in the biomass productivities in days 26-30 suggest that the minimum time for establishing a performant bacteria-microalgae consortium could be of around one month for non-inoculated systems. At this point, the process was fully functional, meeting the European discharge limits for protected areas. The results of the statistical analyses show that both the pH and the dissolved oxygen concentration represent accurately the biochemical processes taking place under the start-up of the process. Both pH and dissolved oxygen represented accurately also the performance of the high-rate algal pond, being affordable, easily-implemented, options for monitoring, control and optimization of industrial-scale processes. | es_ES |
dc.description.sponsorship | The authors acknowledge the financial support of the French National Research Agency (ANR) for the "Phycover" project (project ANR-14-CE04-0011), the Spanish Ministry of Economy and Competitiveness (MINECO, Projects CTM 2014-54980-C2-1-R and CTM 2014-54980-C2-2-R) jointly with the European Regional Development Fund (ERDF), and the European Climate KIC association for the "MAB 2.0" project (APIN0057_2015-3.6-230_P066-05). Angel Robles would also like to acknowledge the financial aid received from Generalitat Valenciana via a VALi d post-doctoral grant (APOSTD/2014/049). Gabriel Capson-Tojo is grateful to the Xunta de Galicia for his postdoctoral fellowship (ED481B-2018/017). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Environmental Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Open ponds | es_ES |
dc.subject | Domestic wastewater | es_ES |
dc.subject | Monitoring | es_ES |
dc.subject | Single-stage treatment | es_ES |
dc.subject.classification | TECNOLOGIA DEL MEDIO AMBIENTE | es_ES |
dc.title | Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jenvman.2020.110244 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-1-R/ES/OBTENCION DE BIONUTRIENTES Y ENERGIA DEL AGUA RESIDUAL URBANA MEDIANTE CULTIVO DE MICROALGAS, TRATAMIENTOS ANAEROBIOS, CRISTALIZACION DE FOSFORO, ABSORCION DE NH3 Y COMPOSTAJE/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ANR//ANR-14-CE04-0011 /FR/Sustainable microalgal production by recycling phosphorus and nitrogen from wastewaters : toward a next generation of sewage treatment plant/Phycover/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/Xunta de Galicia//ED481B-2018%2F017/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2014%2F049/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EIT Climate-KIC//APIN0057_2015-3.6-230_P066-05/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTM2014-54980-C2-2-R/ES/DESARROLLO DE UN SISTEMA DE CONTROL Y DE SOPORTE A LA DECISION PARA LA OBTENCION DE BIONUTRIENTES Y ENERGIA EN PROCESOS DE TRATAMIENTO DE AGUAS RESIDUALES URBANAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Robles Martínez, Á.; Capson-Tojo, G.; Gales, A.; Ruano, MV.; Sialve, B.; Ferrer, J.; Steyer, J. (2020). Microalgae-bacteria consortia in high-rate ponds for treating urban wastewater: Elucidating the key state indicators under dynamic conditions. Journal of Environmental Management. 261:1-11. https://doi.org/10.1016/j.jenvman.2020.110244 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jenvman.2020.110244 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 261 | es_ES |
dc.identifier.pmid | 32148311 | es_ES |
dc.relation.pasarela | S\421277 | es_ES |
dc.contributor.funder | Xunta de Galicia | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | EIT Climate-KIC | es_ES |
dc.contributor.funder | Ministerio de Economía y Empresa | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agence Nationale de la Recherche, Francia | es_ES |
dc.description.references | Fernández, F. G. A., Camacho, F. G., Pérez, J. A. S., Sevilla, J. M. F., & Grima, E. M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55(5), 701-714. doi:10.1002/(sici)1097-0290(19970905)55:5<701::aid-bit1>3.0.co;2-f | es_ES |
dc.description.references | Arbib, Z., de Godos, I., Ruiz, J., & Perales, J. A. (2017). Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production. Science of The Total Environment, 589, 66-72. doi:10.1016/j.scitotenv.2017.02.206 | es_ES |
dc.description.references | Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecological Engineering, 52, 143-153. doi:10.1016/j.ecoleng.2012.12.089 | es_ES |
dc.description.references | Barceló-Villalobos, M., Fernández-del Olmo, P., Guzmán, J. L., Fernández-Sevilla, J. M., & Acién Fernández, F. G. (2019). Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor. Bioresource Technology, 280, 404-411. doi:10.1016/j.biortech.2019.02.032 | es_ES |
dc.description.references | Berenguel, M., Rodrı́guez, F., Acién, F. G., & Garcı́a, J. L. (2004). Model predictive control of pH in tubular photobioreactors. Journal of Process Control, 14(4), 377-387. doi:10.1016/j.jprocont.2003.07.001 | es_ES |
dc.description.references | Blanco, A. M., Moreno, J., Del Campo, J. A., Rivas, J., & Guerrero, M. G. (2007). Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Applied Microbiology and Biotechnology, 73(6), 1259-1266. doi:10.1007/s00253-006-0598-9 | es_ES |
dc.description.references | Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 45(18), 5925-5933. doi:10.1016/j.watres.2011.08.044 | es_ES |
dc.description.references | Capson-Tojo, G., Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Bernet, N., … Escudié, R. (2017). Kinetic study of dry anaerobic co-digestion of food waste and cardboard for methane production. Waste Management, 69, 470-479. doi:10.1016/j.wasman.2017.09.002 | es_ES |
dc.description.references | Craggs, R. J., Heubeck, S., Lundquist, T. J., & Benemann, J. R. (2011). Algal biofuels from wastewater treatment high rate algal ponds. Water Science and Technology, 63(4), 660-665. doi:10.2166/wst.2011.100 | es_ES |
dc.description.references | Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., & Ergas, S. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystems, 9(1), 2. doi:10.1186/2046-9063-9-2 | es_ES |
dc.description.references | De Andrade, G. A., Berenguel, M., Guzmán, J. L., Pagano, D. J., & Acién, F. G. (2016). Optimization of biomass production in outdoor tubular photobioreactors. Journal of Process Control, 37, 58-69. doi:10.1016/j.jprocont.2015.10.001 | es_ES |
dc.description.references | Esposito, S., Cafiero, A., Giannino, F., Mazzoleni, S., & Diano, M. M. (2017). A Monitoring, Modeling and Decision Support System (DSS) for a Microalgae Production Plant based on Internet of Things Structure. Procedia Computer Science, 113, 519-524. doi:10.1016/j.procs.2017.08.316 | es_ES |
dc.description.references | Faried, M., Samer, M., Abdelsalam, E., Yousef, R. S., Attia, Y. A., & Ali, A. S. (2017). Biodiesel production from microalgae: Processes, technologies and recent advancements. Renewable and Sustainable Energy Reviews, 79, 893-913. doi:10.1016/j.rser.2017.05.199 | es_ES |
dc.description.references | Fernández-Sevilla, J. M., Brindley, C., Jiménez-Ruíz, N., & Acién, F. G. (2018). A simple equation to quantify the effect of frequency of light/dark cycles on the photosynthetic response of microalgae under intermittent light. Algal Research, 35, 479-487. doi:10.1016/j.algal.2018.09.026 | es_ES |
dc.description.references | Fernández, I., Acién, F. G., Guzmán, J. L., Berenguel, M., & Mendoza, J. L. (2016). Dynamic model of an industrial raceway reactor for microalgae production. Algal Research, 17, 67-78. doi:10.1016/j.algal.2016.04.021 | es_ES |
dc.description.references | Foladori, P., Petrini, S., & Andreottola, G. (2018). Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chemical Engineering Journal, 345, 507-516. doi:10.1016/j.cej.2018.03.178 | es_ES |
dc.description.references | Galès, A., Bonnafous, A., Carré, C., Jauzein, V., Lanouguère, E., Le Floc’h, E., … Fouilland, E. (2019). Importance of ecological interactions during wastewater treatment using High Rate Algal Ponds under different temperate climates. Algal Research, 40, 101508. doi:10.1016/j.algal.2019.101508 | es_ES |
dc.description.references | González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010 | es_ES |
dc.description.references | González-Camejo, J., Serna-García, R., Viruela, A., Pachés, M., Durán, F., Robles, A., … Seco, A. (2017). Short and long-term experiments on the effect of sulphide on microalgae cultivation in tertiary sewage treatment. Bioresource Technology, 244, 15-22. doi:10.1016/j.biortech.2017.07.126 | es_ES |
dc.description.references | Green, F. B., Bernstone, L. S., Lundquist, T. J., & Oswald, W. J. (1996). Advanced integrated wastewater pond systems for nitrogen removal. Water Science and Technology, 33(7), 207-217. doi:10.2166/wst.1996.0140 | es_ES |
dc.description.references | Havlik, I., Lindner, P., Scheper, T., & Reardon, K. F. (2013). On-line monitoring of large cultivations of microalgae and cyanobacteria. Trends in Biotechnology, 31(7), 406-414. doi:10.1016/j.tibtech.2013.04.005 | es_ES |
dc.description.references | Kumar, K., Mishra, S. K., Shrivastav, A., Park, M. S., & Yang, J.-W. (2015). Recent trends in the mass cultivation of algae in raceway ponds. Renewable and Sustainable Energy Reviews, 51, 875-885. doi:10.1016/j.rser.2015.06.033 | es_ES |
dc.description.references | Lardon, L., Hélias, A., Sialve, B., Steyer, J.-P., & Bernard, O. (2009). Life-Cycle Assessment of Biodiesel Production from Microalgae. Environmental Science & Technology, 43(17), 6475-6481. doi:10.1021/es900705j | es_ES |
dc.description.references | Liu, J., Wu, Y., Wu, C., Muylaert, K., Vyverman, W., Yu, H.-Q., … Rittmann, B. (2017). Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review. Bioresource Technology, 241, 1127-1137. doi:10.1016/j.biortech.2017.06.054 | es_ES |
dc.description.references | Luo, Y., Le-Clech, P., & Henderson, R. K. (2017). Simultaneous microalgae cultivation and wastewater treatment in submerged membrane photobioreactors: A review. Algal Research, 24, 425-437. doi:10.1016/j.algal.2016.10.026 | es_ES |
dc.description.references | Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. doi:10.1016/j.rser.2009.07.020 | es_ES |
dc.description.references | Mohd Udaiyappan, A. F., Abu Hasan, H., Takriff, M. S., & Sheikh Abdullah, S. R. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8-21. doi:10.1016/j.jwpe.2017.09.006 | es_ES |
dc.description.references | Muñoz-Tamayo, R., Mairet, F., & Bernard, O. (2013). Optimizing microalgal production in raceway systems. Biotechnology Progress, 29(2), 543-552. doi:10.1002/btpr.1699 | es_ES |
dc.description.references | Novoveská, L., Zapata, A. K. M., Zabolotney, J. B., Atwood, M. C., & Sundstrom, E. R. (2016). Optimizing microalgae cultivation and wastewater treatment in large-scale offshore photobioreactors. Algal Research, 18, 86-94. doi:10.1016/j.algal.2016.05.033 | es_ES |
dc.description.references | Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., & Moheimani, N. R. (2019). Light management technologies for increasing algal photobioreactor efficiency. Algal Research, 39, 101433. doi:10.1016/j.algal.2019.101433 | es_ES |
dc.description.references | Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102(1), 35-42. doi:10.1016/j.biortech.2010.06.158 | es_ES |
dc.description.references | Romero Villegas, G. I., Fiamengo, M., Acién Fernández, F. G., & Molina Grima, E. (2017). Outdoor production of microalgae biomass at pilot-scale in seawater using centrate as the nutrient source. Algal Research, 25, 538-548. doi:10.1016/j.algal.2017.06.016 | es_ES |
dc.description.references | Solimeno, A., Acíen, F. G., & García, J. (2017). Mechanistic model for design, analysis, operation and control of microalgae cultures: Calibration and application to tubular photobioreactors. Algal Research, 21, 236-246. doi:10.1016/j.algal.2016.11.023 | es_ES |
dc.description.references | Solimeno, A., Parker, L., Lundquist, T., & García, J. (2017). Integral microalgae-bacteria model (BIO_ALGAE): Application to wastewater high rate algal ponds. Science of The Total Environment, 601-602, 646-657. doi:10.1016/j.scitotenv.2017.05.215 | es_ES |
dc.description.references | Tran, K. C., Mendoza Martin, J. L., Heaven, S., Banks, C. J., Acien Fernandez, F. G., & Molina Grima, E. (2014). Cultivation and anaerobic digestion of Scenedesmus spp. grown in a pilot-scale open raceway. Algal Research, 5, 95-102. doi:10.1016/j.algal.2014.06.001 | es_ES |
dc.description.references | Turon, V., Trably, E., Fayet, A., Fouilland, E., & Steyer, J.-P. (2015). Raw dark fermentation effluent to support heterotrophic microalgae growth: microalgae successfully outcompete bacteria for acetate. Algal Research, 12, 119-125. doi:10.1016/j.algal.2015.08.011 | es_ES |
dc.description.references | Uggetti, E., Sialve, B., Latrille, E., & Steyer, J.-P. (2014). Anaerobic digestate as substrate for microalgae culture: The role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152, 437-443. doi:10.1016/j.biortech.2013.11.036 | es_ES |
dc.description.references | Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021-4028. doi:10.1016/j.biortech.2007.01.046 | es_ES |
dc.description.references | Vasumathi, K. K., Premalatha, M., & Subramanian, P. (2012). Parameters influencing the design of photobioreactor for the growth of microalgae. Renewable and Sustainable Energy Reviews, 16(7), 5443-5450. doi:10.1016/j.rser.2012.06.013 | es_ES |
dc.description.references | Viruela, A., Robles, Á., Durán, F., Ruano, M. V., Barat, R., Ferrer, J., & Seco, A. (2018). Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, 178, 665-674. doi:10.1016/j.jclepro.2017.12.223 | es_ES |
dc.description.references | Wang, Y., Guo, W., Yen, H.-W., Ho, S.-H., Lo, Y.-C., Cheng, C.-L., … Chang, J.-S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. doi:10.1016/j.biortech.2015.09.067 | es_ES |
dc.description.references | Wang, Y., Ho, S.-H., Cheng, C.-L., Guo, W.-Q., Nagarajan, D., Ren, N.-Q., … Chang, J.-S. (2016). Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresource Technology, 222, 485-497. doi:10.1016/j.biortech.2016.09.106 | es_ES |
dc.description.references | Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52. doi:10.1016/0169-7439(87)80084-9 | es_ES |
dc.description.references | Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109-130. doi:10.1016/s0169-7439(01)00155-1 | es_ES |