- -

Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics

Mostrar el registro completo del ítem

Giner Navarro, J.; Martínez Casas, J.; Denia, FD.; Baeza González, LM. (2020). Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics. Mathematical Methods in the Applied Sciences. 43(14):7915-7933. https://doi.org/10.1002/mma.5658

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161845

Ficheros en el ítem

Metadatos del ítem

Título: Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics
Autor: Giner Navarro, Juan Martínez Casas, José Denia, F. D. Baeza González, Luis Miguel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Railway interaction is characterised by the coupling between the train and the track introduced through the wheel/rail contact. The introduction of the flexibility in the wheelset and the track through the finite ...[+]
Palabras clave: Computational performance , Contact linearisation , Decoupling technique , Railway dynamics , Rolling contact
Derechos de uso: Reserva de todos los derechos
Fuente:
Mathematical Methods in the Applied Sciences. (issn: 0170-4214 )
DOI: 10.1002/mma.5658
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/mma.5658
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/
Agradecimientos:
European Commission, Grant/Award Number: 777564; Generalitat Valenciana, Grant/Award Number: Prometeo/2016/007; Spanish Ministry of Economy, Industry, and Competitiveness and the European Regional Development Fund, Grant/Award ...[+]
Tipo: Artículo

References

Nielsen, J. C. O., Lund�n, R., Johansson, A., & Vernersson, T. (2003). Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces. Vehicle System Dynamics, 40(1-3), 3-54. doi:10.1076/vesd.40.1.3.15874

Ekberg, A. (2009). Fatigue of railway wheels. Wheel–Rail Interface Handbook, 211-244. doi:10.1533/9781845696788.1.211

Grassie, S. L., Gregory, R. W., Harrison, D., & Johnson, K. L. (1982). The Dynamic Response of Railway Track to High Frequency Vertical Excitation. Journal of Mechanical Engineering Science, 24(2), 77-90. doi:10.1243/jmes_jour_1982_024_016_02 [+]
Nielsen, J. C. O., Lund�n, R., Johansson, A., & Vernersson, T. (2003). Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces. Vehicle System Dynamics, 40(1-3), 3-54. doi:10.1076/vesd.40.1.3.15874

Ekberg, A. (2009). Fatigue of railway wheels. Wheel–Rail Interface Handbook, 211-244. doi:10.1533/9781845696788.1.211

Grassie, S. L., Gregory, R. W., Harrison, D., & Johnson, K. L. (1982). The Dynamic Response of Railway Track to High Frequency Vertical Excitation. Journal of Mechanical Engineering Science, 24(2), 77-90. doi:10.1243/jmes_jour_1982_024_016_02

THOMPSON, D. J., & JONES, C. J. C. (2000). A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION. Journal of Sound and Vibration, 231(3), 519-536. doi:10.1006/jsvi.1999.2542

Baeza, L., Fayos, J., Roda, A., & Insa, R. (2008). High frequency railway vehicle-track dynamics through flexible rotating wheelsets. Vehicle System Dynamics, 46(7), 647-659. doi:10.1080/00423110701656148

Martínez-Casas, J., Fayos, J., Denia, F. D., & Baeza, L. (2012). Dynamics of damped rotating solids of revolution through an Eulerian modal approach. Journal of Sound and Vibration, 331(4), 868-882. doi:10.1016/j.jsv.2011.10.003

Vila, P., Baeza, L., Martínez-Casas, J., & Carballeira, J. (2014). Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch. Vehicle System Dynamics, 52(sup1), 92-108. doi:10.1080/00423114.2014.881513

Hosking, R. J., & Milinazzo, F. (2007). Floating ladder track response to a steadily moving load. Mathematical Methods in the Applied Sciences, 30(14), 1823-1841. doi:10.1002/mma.871

Li, H., Yang, H., & Li, N. (2011). An adaptive algorithm in time domain for dynamic analysis of a simply supported beam subjected to a moving vehicle. Mathematical Methods in the Applied Sciences, 34(8), 996-1005. doi:10.1002/mma.1419

Koh, C. G., Ong, J. S. Y., Chua, D. K. H., & Feng, J. (2003). Moving element method for train-track dynamics. International Journal for Numerical Methods in Engineering, 56(11), 1549-1567. doi:10.1002/nme.624

Torstensson, P. T., Nielsen, J. C. O., & Baeza, L. (2011). Dynamic train–track interaction at high vehicle speeds—Modelling of wheelset dynamics and wheel rotation. Journal of Sound and Vibration, 330(22), 5309-5321. doi:10.1016/j.jsv.2011.05.030

Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 18(1), 1-22. doi:10.1137/s1064827594276424

Baeza, L., & Ouyang, H. (2011). A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration, 330(1), 75-86. doi:10.1016/j.jsv.2010.07.023

Baeza, L., Roda, A., & Nielsen, J. C. O. (2006). Railway vehicle/track interaction analysis using a modal substructuring approach. Journal of Sound and Vibration, 293(1-2), 112-124. doi:10.1016/j.jsv.2005.09.006

Martínez-Casas, J., Mazzola, L., Baeza, L., & Bruni, S. (2013). Numerical estimation of stresses in railway axles using a train–track interaction model. International Journal of Fatigue, 47, 18-30. doi:10.1016/j.ijfatigue.2012.07.006

Martínez-Casas, J., Giner-Navarro, J., Baeza, L., & Denia, F. D. (2017). Improved railway wheelset–track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics, 309, 642-653. doi:10.1016/j.cam.2016.04.034

Ueber die Berührung fester elastischer Körper. (1882). Journal für die reine und angewandte Mathematik (Crelles Journal), 1882(92), 156-171. doi:10.1515/crll.1882.92.156

Pieringer, A., Torstensson, P. T., Giner, J., & Baeza, L. (2018). Investigation of Railway Curve Squeal Using a Combination of Frequency- and Time-Domain Models. Noise and Vibration Mitigation for Rail Transportation Systems, 83-95. doi:10.1007/978-3-319-73411-8_5

Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9

MazzolaL BezinY BruniS.Vehicle‐track interaction: MB simulation for track loading limits and damage identification.ECCOMAS Them Conf Multibody Dyn: Brussels Belgium;2011.

Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8

Giner-Navarro, J., Martínez-Casas, J., Denia, F. D., & Baeza, L. (2018). Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. Journal of Sound and Vibration, 431, 177-191. doi:10.1016/j.jsv.2018.06.004

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem