- -

Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Giner Navarro, Juan es_ES
dc.contributor.author Martínez Casas, José es_ES
dc.contributor.author Denia, F. D. es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.date.accessioned 2021-02-19T04:33:34Z
dc.date.available 2021-02-19T04:33:34Z
dc.date.issued 2020-09-30 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161845
dc.description.abstract [EN] Railway interaction is characterised by the coupling between the train and the track introduced through the wheel/rail contact. The introduction of the flexibility in the wheelset and the track through the finite element (FE) method in the last four decades has permitted to study high-frequency phenomena such as rolling noise and squeal, whose origin lies in the strongly non-steady state and non-linear behaviour of the contact forces that arise from the small contact area. In order to address models with a large number of degrees of freedom, innovative Eulerian-modal models for wheelsets with rotation and cyclic tracks have been developed in recent years. The aim of this paper is to extend the resulting formulation to an uncoupled linear matrix equation of motion that allows solving each equation independently for each time step, considerably reducing the associated computational cost. The decoupling integration method proposed is compared in terms of computational performance with Newmark and Runge-Kutta schemes, commonly used in vehicle dynamics, for simulations with the leading wheelset negotiating a tangent track and accounting the rail roughness. es_ES
dc.description.sponsorship European Commission, Grant/Award Number: 777564; Generalitat Valenciana, Grant/Award Number: Prometeo/2016/007; Spanish Ministry of Economy, Industry, and Competitiveness and the European Regional Development Fund, Grant/Award Number: TRA2017¿84701¿R es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computational performance es_ES
dc.subject Contact linearisation es_ES
dc.subject Decoupling technique es_ES
dc.subject Railway dynamics es_ES
dc.subject Rolling contact es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5658 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Giner Navarro, J.; Martínez Casas, J.; Denia, FD.; Baeza González, LM. (2020). Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics. Mathematical Methods in the Applied Sciences. 43(14):7915-7933. https://doi.org/10.1002/mma.5658 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/mma.5658 es_ES
dc.description.upvformatpinicio 7915 es_ES
dc.description.upvformatpfin 7933 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 43 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\388527 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Shift2Rail Joint Undertaking es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Nielsen, J. C. O., Lund�n, R., Johansson, A., & Vernersson, T. (2003). Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces. Vehicle System Dynamics, 40(1-3), 3-54. doi:10.1076/vesd.40.1.3.15874 es_ES
dc.description.references Ekberg, A. (2009). Fatigue of railway wheels. Wheel–Rail Interface Handbook, 211-244. doi:10.1533/9781845696788.1.211 es_ES
dc.description.references Grassie, S. L., Gregory, R. W., Harrison, D., & Johnson, K. L. (1982). The Dynamic Response of Railway Track to High Frequency Vertical Excitation. Journal of Mechanical Engineering Science, 24(2), 77-90. doi:10.1243/jmes_jour_1982_024_016_02 es_ES
dc.description.references THOMPSON, D. J., & JONES, C. J. C. (2000). A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION. Journal of Sound and Vibration, 231(3), 519-536. doi:10.1006/jsvi.1999.2542 es_ES
dc.description.references Baeza, L., Fayos, J., Roda, A., & Insa, R. (2008). High frequency railway vehicle-track dynamics through flexible rotating wheelsets. Vehicle System Dynamics, 46(7), 647-659. doi:10.1080/00423110701656148 es_ES
dc.description.references Martínez-Casas, J., Fayos, J., Denia, F. D., & Baeza, L. (2012). Dynamics of damped rotating solids of revolution through an Eulerian modal approach. Journal of Sound and Vibration, 331(4), 868-882. doi:10.1016/j.jsv.2011.10.003 es_ES
dc.description.references Vila, P., Baeza, L., Martínez-Casas, J., & Carballeira, J. (2014). Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch. Vehicle System Dynamics, 52(sup1), 92-108. doi:10.1080/00423114.2014.881513 es_ES
dc.description.references Hosking, R. J., & Milinazzo, F. (2007). Floating ladder track response to a steadily moving load. Mathematical Methods in the Applied Sciences, 30(14), 1823-1841. doi:10.1002/mma.871 es_ES
dc.description.references Li, H., Yang, H., & Li, N. (2011). An adaptive algorithm in time domain for dynamic analysis of a simply supported beam subjected to a moving vehicle. Mathematical Methods in the Applied Sciences, 34(8), 996-1005. doi:10.1002/mma.1419 es_ES
dc.description.references Koh, C. G., Ong, J. S. Y., Chua, D. K. H., & Feng, J. (2003). Moving element method for train-track dynamics. International Journal for Numerical Methods in Engineering, 56(11), 1549-1567. doi:10.1002/nme.624 es_ES
dc.description.references Torstensson, P. T., Nielsen, J. C. O., & Baeza, L. (2011). Dynamic train–track interaction at high vehicle speeds—Modelling of wheelset dynamics and wheel rotation. Journal of Sound and Vibration, 330(22), 5309-5321. doi:10.1016/j.jsv.2011.05.030 es_ES
dc.description.references Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 18(1), 1-22. doi:10.1137/s1064827594276424 es_ES
dc.description.references Baeza, L., & Ouyang, H. (2011). A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration, 330(1), 75-86. doi:10.1016/j.jsv.2010.07.023 es_ES
dc.description.references Baeza, L., Roda, A., & Nielsen, J. C. O. (2006). Railway vehicle/track interaction analysis using a modal substructuring approach. Journal of Sound and Vibration, 293(1-2), 112-124. doi:10.1016/j.jsv.2005.09.006 es_ES
dc.description.references Martínez-Casas, J., Mazzola, L., Baeza, L., & Bruni, S. (2013). Numerical estimation of stresses in railway axles using a train–track interaction model. International Journal of Fatigue, 47, 18-30. doi:10.1016/j.ijfatigue.2012.07.006 es_ES
dc.description.references Martínez-Casas, J., Giner-Navarro, J., Baeza, L., & Denia, F. D. (2017). Improved railway wheelset–track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics, 309, 642-653. doi:10.1016/j.cam.2016.04.034 es_ES
dc.description.references Ueber die Berührung fester elastischer Körper. (1882). Journal für die reine und angewandte Mathematik (Crelles Journal), 1882(92), 156-171. doi:10.1515/crll.1882.92.156 es_ES
dc.description.references Pieringer, A., Torstensson, P. T., Giner, J., & Baeza, L. (2018). Investigation of Railway Curve Squeal Using a Combination of Frequency- and Time-Domain Models. Noise and Vibration Mitigation for Rail Transportation Systems, 83-95. doi:10.1007/978-3-319-73411-8_5 es_ES
dc.description.references Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 es_ES
dc.description.references MazzolaL BezinY BruniS.Vehicle‐track interaction: MB simulation for track loading limits and damage identification.ECCOMAS Them Conf Multibody Dyn: Brussels Belgium;2011. es_ES
dc.description.references Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8 es_ES
dc.description.references Giner-Navarro, J., Martínez-Casas, J., Denia, F. D., & Baeza, L. (2018). Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. Journal of Sound and Vibration, 431, 177-191. doi:10.1016/j.jsv.2018.06.004 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem