Mostrar el registro sencillo del ítem
dc.contributor.author | Giner Navarro, Juan | es_ES |
dc.contributor.author | Martínez Casas, José | es_ES |
dc.contributor.author | Denia, F. D. | es_ES |
dc.contributor.author | Baeza González, Luis Miguel | es_ES |
dc.date.accessioned | 2021-02-19T04:33:34Z | |
dc.date.available | 2021-02-19T04:33:34Z | |
dc.date.issued | 2020-09-30 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161845 | |
dc.description.abstract | [EN] Railway interaction is characterised by the coupling between the train and the track introduced through the wheel/rail contact. The introduction of the flexibility in the wheelset and the track through the finite element (FE) method in the last four decades has permitted to study high-frequency phenomena such as rolling noise and squeal, whose origin lies in the strongly non-steady state and non-linear behaviour of the contact forces that arise from the small contact area. In order to address models with a large number of degrees of freedom, innovative Eulerian-modal models for wheelsets with rotation and cyclic tracks have been developed in recent years. The aim of this paper is to extend the resulting formulation to an uncoupled linear matrix equation of motion that allows solving each equation independently for each time step, considerably reducing the associated computational cost. The decoupling integration method proposed is compared in terms of computational performance with Newmark and Runge-Kutta schemes, commonly used in vehicle dynamics, for simulations with the leading wheelset negotiating a tangent track and accounting the rail roughness. | es_ES |
dc.description.sponsorship | European Commission, Grant/Award Number: 777564; Generalitat Valenciana, Grant/Award Number: Prometeo/2016/007; Spanish Ministry of Economy, Industry, and Competitiveness and the European Regional Development Fund, Grant/Award Number: TRA2017¿84701¿R | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Computational performance | es_ES |
dc.subject | Contact linearisation | es_ES |
dc.subject | Decoupling technique | es_ES |
dc.subject | Railway dynamics | es_ES |
dc.subject | Rolling contact | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5658 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/777564/EU/Innovative RUNning gear soluTiOns for new dependable, sustainable, intelligent and comfortable RAIL vehicles/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84701-R/ES/DESARROLLO DE UN MODELO INTEGRAL DE INTERACCION VEHICULO%2FVIA EN CURVA PARA LA REDUCCION DEL IMPACTO ACUSTICO DEL TRANSPORTE FERROVIARIO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Giner Navarro, J.; Martínez Casas, J.; Denia, FD.; Baeza González, LM. (2020). Efficient decoupling technique applied to the numerical time integration of advanced interaction models for railway dynamics. Mathematical Methods in the Applied Sciences. 43(14):7915-7933. https://doi.org/10.1002/mma.5658 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/mma.5658 | es_ES |
dc.description.upvformatpinicio | 7915 | es_ES |
dc.description.upvformatpfin | 7933 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 43 | es_ES |
dc.description.issue | 14 | es_ES |
dc.relation.pasarela | S\388527 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Shift2Rail Joint Undertaking | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Nielsen, J. C. O., Lund�n, R., Johansson, A., & Vernersson, T. (2003). Train-Track Interaction and Mechanisms of Irregular Wear on Wheel and Rail Surfaces. Vehicle System Dynamics, 40(1-3), 3-54. doi:10.1076/vesd.40.1.3.15874 | es_ES |
dc.description.references | Ekberg, A. (2009). Fatigue of railway wheels. Wheel–Rail Interface Handbook, 211-244. doi:10.1533/9781845696788.1.211 | es_ES |
dc.description.references | Grassie, S. L., Gregory, R. W., Harrison, D., & Johnson, K. L. (1982). The Dynamic Response of Railway Track to High Frequency Vertical Excitation. Journal of Mechanical Engineering Science, 24(2), 77-90. doi:10.1243/jmes_jour_1982_024_016_02 | es_ES |
dc.description.references | THOMPSON, D. J., & JONES, C. J. C. (2000). A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION. Journal of Sound and Vibration, 231(3), 519-536. doi:10.1006/jsvi.1999.2542 | es_ES |
dc.description.references | Baeza, L., Fayos, J., Roda, A., & Insa, R. (2008). High frequency railway vehicle-track dynamics through flexible rotating wheelsets. Vehicle System Dynamics, 46(7), 647-659. doi:10.1080/00423110701656148 | es_ES |
dc.description.references | Martínez-Casas, J., Fayos, J., Denia, F. D., & Baeza, L. (2012). Dynamics of damped rotating solids of revolution through an Eulerian modal approach. Journal of Sound and Vibration, 331(4), 868-882. doi:10.1016/j.jsv.2011.10.003 | es_ES |
dc.description.references | Vila, P., Baeza, L., Martínez-Casas, J., & Carballeira, J. (2014). Rail corrugation growth accounting for the flexibility and rotation of the wheel set and the non-Hertzian and non-steady-state effects at contact patch. Vehicle System Dynamics, 52(sup1), 92-108. doi:10.1080/00423114.2014.881513 | es_ES |
dc.description.references | Hosking, R. J., & Milinazzo, F. (2007). Floating ladder track response to a steadily moving load. Mathematical Methods in the Applied Sciences, 30(14), 1823-1841. doi:10.1002/mma.871 | es_ES |
dc.description.references | Li, H., Yang, H., & Li, N. (2011). An adaptive algorithm in time domain for dynamic analysis of a simply supported beam subjected to a moving vehicle. Mathematical Methods in the Applied Sciences, 34(8), 996-1005. doi:10.1002/mma.1419 | es_ES |
dc.description.references | Koh, C. G., Ong, J. S. Y., Chua, D. K. H., & Feng, J. (2003). Moving element method for train-track dynamics. International Journal for Numerical Methods in Engineering, 56(11), 1549-1567. doi:10.1002/nme.624 | es_ES |
dc.description.references | Torstensson, P. T., Nielsen, J. C. O., & Baeza, L. (2011). Dynamic train–track interaction at high vehicle speeds—Modelling of wheelset dynamics and wheel rotation. Journal of Sound and Vibration, 330(22), 5309-5321. doi:10.1016/j.jsv.2011.05.030 | es_ES |
dc.description.references | Shampine, L. F., & Reichelt, M. W. (1997). The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 18(1), 1-22. doi:10.1137/s1064827594276424 | es_ES |
dc.description.references | Baeza, L., & Ouyang, H. (2011). A railway track dynamics model based on modal substructuring and a cyclic boundary condition. Journal of Sound and Vibration, 330(1), 75-86. doi:10.1016/j.jsv.2010.07.023 | es_ES |
dc.description.references | Baeza, L., Roda, A., & Nielsen, J. C. O. (2006). Railway vehicle/track interaction analysis using a modal substructuring approach. Journal of Sound and Vibration, 293(1-2), 112-124. doi:10.1016/j.jsv.2005.09.006 | es_ES |
dc.description.references | Martínez-Casas, J., Mazzola, L., Baeza, L., & Bruni, S. (2013). Numerical estimation of stresses in railway axles using a train–track interaction model. International Journal of Fatigue, 47, 18-30. doi:10.1016/j.ijfatigue.2012.07.006 | es_ES |
dc.description.references | Martínez-Casas, J., Giner-Navarro, J., Baeza, L., & Denia, F. D. (2017). Improved railway wheelset–track interaction model in the high-frequency domain. Journal of Computational and Applied Mathematics, 309, 642-653. doi:10.1016/j.cam.2016.04.034 | es_ES |
dc.description.references | Ueber die Berührung fester elastischer Körper. (1882). Journal für die reine und angewandte Mathematik (Crelles Journal), 1882(92), 156-171. doi:10.1515/crll.1882.92.156 | es_ES |
dc.description.references | Pieringer, A., Torstensson, P. T., Giner, J., & Baeza, L. (2018). Investigation of Railway Curve Squeal Using a Combination of Frequency- and Time-Domain Models. Noise and Vibration Mitigation for Rail Transportation Systems, 83-95. doi:10.1007/978-3-319-73411-8_5 | es_ES |
dc.description.references | Kalker, J. J. (1990). Three-Dimensional Elastic Bodies in Rolling Contact. Solid Mechanics and Its Applications. doi:10.1007/978-94-015-7889-9 | es_ES |
dc.description.references | MazzolaL BezinY BruniS.Vehicle‐track interaction: MB simulation for track loading limits and damage identification.ECCOMAS Them Conf Multibody Dyn: Brussels Belgium;2011. | es_ES |
dc.description.references | Giner, J., Baeza, L., Vila, P., & Alonso, A. (2017). Study of the Falling Friction Effect on Rolling Contact Parameters. Tribology Letters, 65(1). doi:10.1007/s11249-016-0810-8 | es_ES |
dc.description.references | Giner-Navarro, J., Martínez-Casas, J., Denia, F. D., & Baeza, L. (2018). Study of railway curve squeal in the time domain using a high-frequency vehicle/track interaction model. Journal of Sound and Vibration, 431, 177-191. doi:10.1016/j.jsv.2018.06.004 | es_ES |
dc.subject.ods | 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación | es_ES |