- -

Accelerated serverless computing based on GPU virtualization

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Accelerated serverless computing based on GPU virtualization

Show full item record

Naranjo-Delgado, DM.; Risco, S.; Alfonso Laguna, CD.; Pérez-González, AM.; Blanquer Espert, I.; Moltó, G. (2020). Accelerated serverless computing based on GPU virtualization. Journal of Parallel and Distributed Computing. 139:32-42. https://doi.org/10.1016/j.jpdc.2020.01.004

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161846

Files in this item

Item Metadata

Title: Accelerated serverless computing based on GPU virtualization
Author: Naranjo-Delgado, Diana María Risco, Sebastián Alfonso Laguna, Carlos De Pérez-González, Alfonso María Blanquer Espert, Ignacio Moltó, Germán
UPV Unit: Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] This paper introduces a platform to support serverless computing for scalable event-driven data processing that features a multi-level elasticity approach combined with virtualization of GPUs. The platform supports ...[+]
Subjects: Serverless computing , GPUs , GPU virtualization
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Journal of Parallel and Distributed Computing. (issn: 0743-7315 )
DOI: 10.1016/j.jpdc.2020.01.004
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.jpdc.2020.01.004
Project ID:
info:eu-repo/grantAgreement/EC/H2020/777154/EU/Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring, Hybrid Ecosystem for REsilient Cloud Computing/
info:eu-repo/grantAgreement/MCTIC//51119/BR/Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing(ATMOSPHERE)/
info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/
info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F071/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F032/ES/ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/
Thanks:
The work presented in this article has been partially funded by a research grant from the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development ...[+]
Type: Artículo

References

De Alfonso, C., Caballer, M., Alvarruiz, F., & Hernández, V. (2013). An energy management system for cluster infrastructures. Computers & Electrical Engineering, 39(8), 2579-2590. doi:10.1016/j.compeleceng.2013.05.004

. Alibaba, Alibaba Cloud Function Compute, URL https://www.alibabacloud.com/products/function-compute.

. Amazon, Amazon Web Services (AWS), URL http://aws.amazon.com. [+]
De Alfonso, C., Caballer, M., Alvarruiz, F., & Hernández, V. (2013). An energy management system for cluster infrastructures. Computers & Electrical Engineering, 39(8), 2579-2590. doi:10.1016/j.compeleceng.2013.05.004

. Alibaba, Alibaba Cloud Function Compute, URL https://www.alibabacloud.com/products/function-compute.

. Amazon, Amazon Web Services (AWS), URL http://aws.amazon.com.

. Amazon, Amazon Simple Storage Service (Amazon S3), URL http://aws.amazon.com/s3/.

. Amazon Web Services, AWS Lambda, URL https://aws.amazon.com/lambda.

. Apache, OpenWhisk, URL https://openwhisk.apache.org/.

Apache Mesos, URL http://mesos.apache.org/.

Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5

E. Camacho-Ramos, A. Jimenez-Pastor, I. Blanquer, F. García-Castro, A. Alberich-Bayarri, Computer Aided Diagnosis for Rheumatic Heart Disease by AI Applied to Features Extraction from Echocardiography.

A. Ellis, OpenFaaS, URL https://www.openfaas.com/.

Fission, URL https://fission.io/.

Giménez-Alventosa, V., Moltó, G., & Caballer, M. (2019). A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Generation Computer Systems, 97, 259-274. doi:10.1016/j.future.2019.02.057

. Google, Knative, URL https://github.com/knative/.

. Google, Google Cloud Functions, URL https://cloud.google.com/functions/.

. Google, Tensorflow, URL https://www.tensorflow.org/.

. IBM, IBM Cloud Functions, URL https://www.ibm.com/cloud/functions.

A. Jimenez-Pastor, A. Alberich-Bayarri, F. Garcia-Castro, L. Marti-Bonmati, Automatic visceral fat characterisation on CT scans through deep learning and CNN for the assessment of metabolic syndrome, in: ECR 2019: Book of Abstracts. Insights Into Imaging, Vol. 10 (S1), , 2019.

. Keras, Keras, URL https://keras.io/.

. Kubernetes, Kubernetes, URL https://kubernetes.io/.

. Microsoft, Microsoft Azure Functions, URL https://azure.microsoft.com/en-us/services/functions/.

. Microsoft, Microsoft Cognitive Toolkit, URL https://www.microsoft.com/en-us/cognitive-toolkit/.

MinIO, URL https://min.io.

Nascimento, B. R., Beaton, A. Z., Nunes, M. C. P., Diamantino, A. C., Carmo, G. A. L., Oliveira, K. K. B., … Sable, C. (2016). Echocardiographic prevalence of rheumatic heart disease in Brazilian schoolchildren: Data from the PROVAR study. International Journal of Cardiology, 219, 439-445. doi:10.1016/j.ijcard.2016.06.088

Nuclio, URL https://nuclio.io/.

Open Container Initiative, URL https://www.opencontainers.org/.

. Oracle, Fn Project, URL https://fnproject.io/.

Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based architectures. Future Generation Computer Systems, 83, 50-59. doi:10.1016/j.future.2018.01.022

A. Pérez, S. Risco, D.M. Naranjo, M. Caballer, G. Moltó, Serverless computing for event-driven data processing applications, in: 2019 IEEE International Conference on Cloud Computing, CLOUD 2019, , 2019.

. Pivotal, Project riff, URL https://projectriff.io/.

A.W. Services, API Gateway, URL https://aws.amazon.com/api-gateway.

Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112

Spillner, J., Mateos, C., & Monge, D. A. (2017). FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC. High Performance Computing, 154-168. doi:10.1007/978-3-319-73353-1_11

Suzuki, Y., Kato, S., Yamada, H., & Kono, K. (2016). GPUvm: GPU Virtualization at the Hypervisor. IEEE Transactions on Computers, 65(9), 2752-2766. doi:10.1109/tc.2015.2506582

Tan, H., Tan, Y., He, X., Li, K., & Li, K. (2019). A Virtual Multi-Channel GPU Fair Scheduling Method for Virtual Machines. IEEE Transactions on Parallel and Distributed Systems, 30(2), 257-270. doi:10.1109/tpds.2018.2865341

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record