- -

Accelerated serverless computing based on GPU virtualization

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Accelerated serverless computing based on GPU virtualization

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Naranjo-Delgado, Diana María es_ES
dc.contributor.author Risco, Sebastián es_ES
dc.contributor.author Alfonso Laguna, Carlos De es_ES
dc.contributor.author Pérez-González, Alfonso María es_ES
dc.contributor.author Blanquer Espert, Ignacio es_ES
dc.contributor.author Moltó, Germán es_ES
dc.date.accessioned 2021-02-19T04:33:37Z
dc.date.available 2021-02-19T04:33:37Z
dc.date.issued 2020-05 es_ES
dc.identifier.issn 0743-7315 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161846
dc.description.abstract [EN] This paper introduces a platform to support serverless computing for scalable event-driven data processing that features a multi-level elasticity approach combined with virtualization of GPUs. The platform supports the execution of applications based on Docker containers in response to file uploads to a data storage in order to perform the data processing in parallel. This is managed by an elastic Kubernetes cluster whose size automatically grows and shrinks depending on the number of files to be processed. To accelerate the processing time of each file, several approaches involving virtualized access to GPUs, either locally or remote, have been evaluated. A use case that involves the inference based on deep learning techniques on transtoracic echocardiography imaging has been carried out to assess the benefits and limitations of the platform. The results indicate that the combination of serverless computing and GPU virtualization introduce an efficient and cost-effective event-driven accelerated computing approach that can be applied for a wide variety of scientific applications. es_ES
dc.description.sponsorship The work presented in this article has been partially funded by a research grant from the regional government of the Comunitat Valenciana (Spain), co-funded by the European Union ERDF funds (European Regional Development Fund) of the Comunitat Valenciana 2014-2020, with reference IDIFEDER/2018/032 (High-Performance Algorithms for the Modeling, Simulation and early Detection of diseases in Personalized Medicine). The authors would also like to thank the Spanish "Ministerio de Economia, Industria y Competitividad" for the project "BigCLOE" with reference number TIN2016-79951-R and the project ATMOSPHERE, funded jointly by the European Commission under the Cooperation Programme, Horizon 2020 grant agreement No 777154 and the Brazilian Ministerio de Ciencia, Tecnologia e Inovacao (MCI-I), number 51119. D.M.N would like to thank the "Generalitat Valenciana, Spain" for the grant GrisoliaP/2017/071. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Parallel and Distributed Computing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Serverless computing es_ES
dc.subject GPUs es_ES
dc.subject GPU virtualization es_ES
dc.subject.classification CIENCIAS DE LA COMPUTACION E INTELIGENCIA ARTIFICIAL es_ES
dc.title Accelerated serverless computing based on GPU virtualization es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jpdc.2020.01.004 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/777154/EU/Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring, Hybrid Ecosystem for REsilient Cloud Computing/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MCTIC//51119/BR/Adaptive, Trustworthy, Manageable, Orchestrated, Secure, Privacy-assuring Hybrid, Ecosystem for Resilient Cloud Computing(ATMOSPHERE)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2016-79951-R/ES/COMPUTACION BIG DATA Y DE ALTAS PRESTACIONES SOBRE MULTI-CLOUDS ELASTICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2017%2F071/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F032/ES/ALGORITMOS DE ALTAS PRESTACIONES PARA EL MODELADO, SIMULACIÓN Y DETECCIÓN TEMPRANA DE ENFERMEDADES EN UN ESCENARIO DE MEDICINA PERSONALIZADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Naranjo-Delgado, DM.; Risco, S.; Alfonso Laguna, CD.; Pérez-González, AM.; Blanquer Espert, I.; Moltó, G. (2020). Accelerated serverless computing based on GPU virtualization. Journal of Parallel and Distributed Computing. 139:32-42. https://doi.org/10.1016/j.jpdc.2020.01.004 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jpdc.2020.01.004 es_ES
dc.description.upvformatpinicio 32 es_ES
dc.description.upvformatpfin 42 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.relation.pasarela S\401990 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes, Brasil es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references De Alfonso, C., Caballer, M., Alvarruiz, F., & Hernández, V. (2013). An energy management system for cluster infrastructures. Computers & Electrical Engineering, 39(8), 2579-2590. doi:10.1016/j.compeleceng.2013.05.004 es_ES
dc.description.references . Alibaba, Alibaba Cloud Function Compute, URL https://www.alibabacloud.com/products/function-compute. es_ES
dc.description.references . Amazon, Amazon Web Services (AWS), URL http://aws.amazon.com. es_ES
dc.description.references . Amazon, Amazon Simple Storage Service (Amazon S3), URL http://aws.amazon.com/s3/. es_ES
dc.description.references . Amazon Web Services, AWS Lambda, URL https://aws.amazon.com/lambda. es_ES
dc.description.references . Apache, OpenWhisk, URL https://openwhisk.apache.org/. es_ES
dc.description.references Apache Mesos, URL http://mesos.apache.org/. es_ES
dc.description.references Caballer, M., Blanquer, I., Moltó, G., & de Alfonso, C. (2014). Dynamic Management of Virtual Infrastructures. Journal of Grid Computing, 13(1), 53-70. doi:10.1007/s10723-014-9296-5 es_ES
dc.description.references E. Camacho-Ramos, A. Jimenez-Pastor, I. Blanquer, F. García-Castro, A. Alberich-Bayarri, Computer Aided Diagnosis for Rheumatic Heart Disease by AI Applied to Features Extraction from Echocardiography. es_ES
dc.description.references A. Ellis, OpenFaaS, URL https://www.openfaas.com/. es_ES
dc.description.references Fission, URL https://fission.io/. es_ES
dc.description.references Giménez-Alventosa, V., Moltó, G., & Caballer, M. (2019). A framework and a performance assessment for serverless MapReduce on AWS Lambda. Future Generation Computer Systems, 97, 259-274. doi:10.1016/j.future.2019.02.057 es_ES
dc.description.references . Google, Knative, URL https://github.com/knative/. es_ES
dc.description.references . Google, Google Cloud Functions, URL https://cloud.google.com/functions/. es_ES
dc.description.references . Google, Tensorflow, URL https://www.tensorflow.org/. es_ES
dc.description.references . IBM, IBM Cloud Functions, URL https://www.ibm.com/cloud/functions. es_ES
dc.description.references A. Jimenez-Pastor, A. Alberich-Bayarri, F. Garcia-Castro, L. Marti-Bonmati, Automatic visceral fat characterisation on CT scans through deep learning and CNN for the assessment of metabolic syndrome, in: ECR 2019: Book of Abstracts. Insights Into Imaging, Vol. 10 (S1), , 2019. es_ES
dc.description.references . Keras, Keras, URL https://keras.io/. es_ES
dc.description.references . Kubernetes, Kubernetes, URL https://kubernetes.io/. es_ES
dc.description.references . Microsoft, Microsoft Azure Functions, URL https://azure.microsoft.com/en-us/services/functions/. es_ES
dc.description.references . Microsoft, Microsoft Cognitive Toolkit, URL https://www.microsoft.com/en-us/cognitive-toolkit/. es_ES
dc.description.references MinIO, URL https://min.io. es_ES
dc.description.references Nascimento, B. R., Beaton, A. Z., Nunes, M. C. P., Diamantino, A. C., Carmo, G. A. L., Oliveira, K. K. B., … Sable, C. (2016). Echocardiographic prevalence of rheumatic heart disease in Brazilian schoolchildren: Data from the PROVAR study. International Journal of Cardiology, 219, 439-445. doi:10.1016/j.ijcard.2016.06.088 es_ES
dc.description.references Nuclio, URL https://nuclio.io/. es_ES
dc.description.references Open Container Initiative, URL https://www.opencontainers.org/. es_ES
dc.description.references . Oracle, Fn Project, URL https://fnproject.io/. es_ES
dc.description.references Pérez, A., Moltó, G., Caballer, M., & Calatrava, A. (2018). Serverless computing for container-based architectures. Future Generation Computer Systems, 83, 50-59. doi:10.1016/j.future.2018.01.022 es_ES
dc.description.references A. Pérez, S. Risco, D.M. Naranjo, M. Caballer, G. Moltó, Serverless computing for event-driven data processing applications, in: 2019 IEEE International Conference on Cloud Computing, CLOUD 2019, , 2019. es_ES
dc.description.references . Pivotal, Project riff, URL https://projectriff.io/. es_ES
dc.description.references A.W. Services, API Gateway, URL https://aws.amazon.com/api-gateway. es_ES
dc.description.references Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112 es_ES
dc.description.references Spillner, J., Mateos, C., & Monge, D. A. (2017). FaaSter, Better, Cheaper: The Prospect of Serverless Scientific Computing and HPC. High Performance Computing, 154-168. doi:10.1007/978-3-319-73353-1_11 es_ES
dc.description.references Suzuki, Y., Kato, S., Yamada, H., & Kono, K. (2016). GPUvm: GPU Virtualization at the Hypervisor. IEEE Transactions on Computers, 65(9), 2752-2766. doi:10.1109/tc.2015.2506582 es_ES
dc.description.references Tan, H., Tan, Y., He, X., Li, K., & Li, K. (2019). A Virtual Multi-Channel GPU Fair Scheduling Method for Virtual Machines. IEEE Transactions on Parallel and Distributed Systems, 30(2), 257-270. doi:10.1109/tpds.2018.2865341 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem