Mostrar el registro sencillo del ítem
dc.contributor.author | Macian-Sorribes, Hector | es_ES |
dc.contributor.author | Pechlivanidis, Ilias | es_ES |
dc.contributor.author | Crochemore, Louise | es_ES |
dc.contributor.author | Pulido-Velazquez, M. | es_ES |
dc.date.accessioned | 2021-02-19T04:33:46Z | |
dc.date.available | 2021-02-19T04:33:46Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1525-755X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161850 | |
dc.description.abstract | [EN] Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently, postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a methodology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping between large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can adapt its input set to increase the skill of postprocessed forecasts. | es_ES |
dc.description.sponsorship | This study was partially funded by the EU Horizon 2020 programme under the IMPREX research and innovation project (grant agreement no. 641.811), by the European Research Area for Climate Services programme (ER4CS) under the INNOVA project (Grant Agreement 690462), by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program of Universitat Politecnica de Valencia (PAID 10-18). Funding was also received from the EU Horizon 2020 project S2S4E (Sub -seasonal to Seasonal forecasting for the Energy sector) under Grant Agreement 776787. This study was also partially funded by the EU Horizon 2020 project CLARA under the Grant Agreement 730482. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Meteorological Society | es_ES |
dc.relation.ispartof | Journal of Hydrometeorology | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Seasonal forecasting | es_ES |
dc.subject | Hydrologic models | es_ES |
dc.subject | Mesoscale models | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1175/JHM-D-19-0266.1 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UPV//PAID-10-18/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//PCIN-2017-066/ES/INNOVACION EN LA PROVISION DE SERVICIOS CLIMATICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/730482/EU/Climate forecast enabled knowledge services/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/776787/EU/Sub-seasonal to Seasonal climate forecasting for Energy/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Macian-Sorribes, H.; Pechlivanidis, I.; Crochemore, L.; Pulido-Velazquez, M. (2020). Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management. Journal of Hydrometeorology. 21(10):2375-2389. https://doi.org/10.1175/JHM-D-19-0266.1 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1175/JHM-D-19-0266.1 | es_ES |
dc.description.upvformatpinicio | 2375 | es_ES |
dc.description.upvformatpfin | 2389 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | es_ES |
dc.description.issue | 10 | es_ES |
dc.relation.pasarela | S\422799 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Universitat Politècnica de València | es_ES |
dc.description.references | Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027 | es_ES |
dc.description.references | Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., … Pappenberger, F. (2016). Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game. Hydrology and Earth System Sciences, 20(8), 3109-3128. doi:10.5194/hess-20-3109-2016 | es_ES |
dc.description.references | Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., & Pappenberger, F. (2017). An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 18(6), 1715-1729. doi:10.1175/jhm-d-16-0259.1 | es_ES |
dc.description.references | Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., … Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 22(4), 2057-2072. doi:10.5194/hess-22-2057-2018 | es_ES |
dc.description.references | Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622. doi:10.1002/2015wr018247 | es_ES |
dc.description.references | Berg, P., Donnelly, C., & Gustafsson, D. (2018). Near-real-time adjusted reanalysis forcing data for hydrology. Hydrology and Earth System Sciences, 22(2), 989-1000. doi:10.5194/hess-22-989-2018 | es_ES |
dc.description.references | Brown, C., & Rogers, P. (2006). Effect of Forecast-Based Pricing on Irrigated Agriculture: A Simulation. Journal of Water Resources Planning and Management, 132(6), 403-413. doi:10.1061/(asce)0733-9496(2006)132:6(403) | es_ES |
dc.description.references | Contreras, E., Herrero, J., Crochemore, L., Pechlivanidis, I., Photiadou, C., Aguilar, C., & Polo, M. J. (2020). Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies, 13(7), 1827. doi:10.3390/en13071827 | es_ES |
dc.description.references | Crochemore, L., Ramos, M.-H., Pappenberger, F., Andel, S. J. van, & Wood, A. W. (2016). An Experiment on Risk-Based Decision-Making in Water Management Using Monthly Probabilistic Forecasts. Bulletin of the American Meteorological Society, 97(4), 541-551. doi:10.1175/bams-d-14-00270.1 | es_ES |
dc.description.references | Crochemore, L., Ramos, M. ‐H., & Pechlivanidis, I. G. (2020). Can Continental Models Convey Useful Seasonal Hydrologic Information at the Catchment Scale? Water Resources Research, 56(2). doi:10.1029/2019wr025700 | es_ES |
dc.description.references | Dobson, B., Wagener, T., & Pianosi, F. (2019). An argument-driven classification and comparison of reservoir operation optimization methods. Advances in Water Resources, 128, 74-86. doi:10.1016/j.advwatres.2019.04.012 | es_ES |
dc.description.references | Donnelly, C., Andersson, J. C. M., & Arheimer, B. (2015). Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2), 255-273. doi:10.1080/02626667.2015.1027710 | es_ES |
dc.description.references | Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571 | es_ES |
dc.description.references | Foster, K., Bertacchi Uvo, C., & Olsson, J. (2018). The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers. Hydrology and Earth System Sciences, 22(5), 2953-2970. doi:10.5194/hess-22-2953-2018 | es_ES |
dc.description.references | Giuliani, M., Crochemore, L., Pechlivanidis, I., & Castelletti, A. (2020). From skill to value: isolating the influence of end user behavior on seasonal forecast assessment. Hydrology and Earth System Sciences, 24(12), 5891-5902. doi:10.5194/hess-24-5891-2020 | es_ES |
dc.description.references | Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., & Zhu, X. (2018). Short-Term Water Demand Forecast Based on Deep Learning Method. Journal of Water Resources Planning and Management, 144(12), 04018076. doi:10.1061/(asce)wr.1943-5452.0000992 | es_ES |
dc.description.references | Hersbach, H. (2000). Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather and Forecasting, 15(5), 559-570. doi:10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2 | es_ES |
dc.description.references | Hundecha, Y., Arheimer, B., Donnelly, C., & Pechlivanidis, I. (2016). A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies, 6, 90-111. doi:10.1016/j.ejrh.2016.04.002 | es_ES |
dc.description.references | Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., … Monge-Sanz, B. M. (2019). SEAS5: the new ECMWF seasonal forecast system. Geoscientific Model Development, 12(3), 1087-1117. doi:10.5194/gmd-12-1087-2019 | es_ES |
dc.description.references | Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. doi:10.5194/hess-17-2845-2013 | es_ES |
dc.description.references | Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011 | es_ES |
dc.description.references | Lavers, D. A., Ramos, M.-H., Magnusson, L., Pechlivanidis, I., Klein, B., Prudhomme, C., … Pappenberger, F. (2020). A Vision for Hydrological Prediction. Atmosphere, 11(3), 237. doi:10.3390/atmos11030237 | es_ES |
dc.description.references | Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., & Di, Z. (2017). A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. WIREs Water, 4(6). doi:10.1002/wat2.1246 | es_ES |
dc.description.references | Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017 | es_ES |
dc.description.references | Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research, 41(3-4), 295-319. doi:10.2166/nh.2010.007 | es_ES |
dc.description.references | Macian-Sorribes, H., & Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a Multireservoir System. Journal of Water Resources Planning and Management, 143(1), 04016069. doi:10.1061/(asce)wr.1943-5452.0000712 | es_ES |
dc.description.references | MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., … Madec, G. (2014). Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141(689), 1072-1084. doi:10.1002/qj.2396 | es_ES |
dc.description.references | Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., … Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3). doi:10.1029/2009rg000314 | es_ES |
dc.description.references | Matheson, J. E., & Winkler, R. L. (1976). Scoring Rules for Continuous Probability Distributions. Management Science, 22(10), 1087-1096. doi:10.1287/mnsc.22.10.1087 | es_ES |
dc.description.references | Meißner, D., Klein, B., & Ionita, M. (2017). Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrology and Earth System Sciences, 21(12), 6401-6423. doi:10.5194/hess-21-6401-2017 | es_ES |
dc.description.references | Nazemi, A., & Wheater, H. S. (2015). On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 19(1), 33-61. doi:10.5194/hess-19-33-2015 | es_ES |
dc.description.references | Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S., Theofanidi, S., & Cloke, H. L. (2018). Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity. Geoscience Communication, 1(1), 35-57. doi:10.5194/gc-1-35-2018 | es_ES |
dc.description.references | Neumann, J., Arnal, L., Magnusson, L., & Cloke, H. (2018). The 2013/14 Thames Basin Floods: Do Improved Meteorological Forecasts Lead to More Skillful Hydrological Forecasts at Seasonal Time Scales? Journal of Hydrometeorology, 19(6), 1059-1075. doi:10.1175/jhm-d-17-0182.1 | es_ES |
dc.description.references | Pechlivanidis, I. G., & Arheimer, B. (2015). Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences, 19(11), 4559-4579. doi:10.5194/hess-19-4559-2015 | es_ES |
dc.description.references | Pianosi, F., & Soncini-Sessa, R. (2009). Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resources Research, 45(10). doi:10.1029/2008wr007335 | es_ES |
dc.description.references | Pina, J., Tilmant, A., & Côté, P. (2017). Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables. Water Resources Research, 53(11), 9845-9859. doi:10.1002/2017wr021701 | es_ES |
dc.description.references | Ramos, M.-H., Bartholmes, J., & Thielen-del Pozo, J. (2007). Development of decision support products based on ensemble forecasts in the European flood alert system. Atmospheric Science Letters, 8(4), 113-119. doi:10.1002/asl.161 | es_ES |
dc.description.references | Rani, D., & Moreira, M. M. (2009). Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation. Water Resources Management, 24(6), 1107-1138. doi:10.1007/s11269-009-9488-0 | es_ES |
dc.description.references | Raso, L., & Malaterre, P. O. (2017). Combining Short-Term and Long-Term Reservoir Operation Using Infinite Horizon Model Predictive Control. Journal of Irrigation and Drainage Engineering, 143(3). doi:10.1061/(asce)ir.1943-4774.0001063 | es_ES |
dc.description.references | Russell, S. O., & Campbell, P. F. (1996). Reservoir Operating Rules with Fuzzy Programming. Journal of Water Resources Planning and Management, 122(3), 165-170. doi:10.1061/(asce)0733-9496(1996)122:3(165) | es_ES |
dc.description.references | Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5). doi:10.1029/2008wr007327 | es_ES |
dc.description.references | Shrestha, B. P., Duckstein, L., & Stakhiv, E. Z. (1996). Fuzzy Rule-Based Modeling of Reservoir Operation. Journal of Water Resources Planning and Management, 122(4), 262-269. doi:10.1061/(asce)0733-9496(1996)122:4(262) | es_ES |
dc.description.references | Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2). doi:10.1029/2007gl032487 | es_ES |
dc.description.references | Shukla, S., Sheffield, J., Wood, E. F., & Lettenmaier, D. P. (2013). On the sources of global land surface hydrologic predictability. Hydrology and Earth System Sciences, 17(7), 2781-2796. doi:10.5194/hess-17-2781-2013 | es_ES |
dc.description.references | Sreekanth, J., Datta, B., & Mohapatra, P. K. (2012). Optimal Short-term Reservoir Operation with Integrated Long-term Goals. Water Resources Management, 26(10), 2833-2850. doi:10.1007/s11269-012-0051-z | es_ES |
dc.description.references | Teutschbein, C., Wetterhall, F., & Seibert, J. (2011). Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 37(9-10), 2087-2105. doi:10.1007/s00382-010-0979-8 | es_ES |
dc.description.references | Turan, M. E., & Yurdusev, M. A. (2015). Fuzzy Conceptual Hydrological Model for Water Flow Prediction. Water Resources Management, 30(2), 653-667. doi:10.1007/s11269-015-1183-8 | es_ES |
dc.description.references | Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L., & Wood, E. F. (2019). Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System. Journal of Hydrometeorology, 20(1), 99-115. doi:10.1175/jhm-d-18-0040.1 | es_ES |
dc.description.references | Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M., & Pappenberger, E. (2015). Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrology and Earth System Sciences, 19(6), 2577-2586. doi:10.5194/hess-19-2577-2015 | es_ES |
dc.description.references | Wood, A. W., & Lettenmaier, D. P. (2008). An ensemble approach for attribution of hydrologic prediction uncertainty. Geophysical Research Letters, 35(14). doi:10.1029/2008gl034648 | es_ES |
dc.description.references | Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., & Clark, M. (2016). Quantifying Streamflow Forecast Skill Elasticity to Initial Condition and Climate Prediction Skill. Journal of Hydrometeorology, 17(2), 651-668. doi:10.1175/jhm-d-14-0213.1 | es_ES |
dc.description.references | Wu, X., Cheng, C., Zeng, Y., & Lund, J. R. (2016). Centralized versus Distributed Cooperative Operating Rules for Multiple Cascaded Hydropower Reservoirs. Journal of Water Resources Planning and Management, 142(11), 05016008. doi:10.1061/(asce)wr.1943-5452.0000685 | es_ES |
dc.description.references | Yang, W., Andréasson, J., Phil Graham, L., Olsson, J., Rosberg, J., & Wetterhall, F. (2010). Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, 41(3-4), 211-229. doi:10.2166/nh.2010.004 | es_ES |
dc.subject.ods | 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |