- -

Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Macian-Sorribes, Hector es_ES
dc.contributor.author Pechlivanidis, Ilias es_ES
dc.contributor.author Crochemore, Louise es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2021-02-19T04:33:46Z
dc.date.available 2021-02-19T04:33:46Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 1525-755X es_ES
dc.identifier.uri http://hdl.handle.net/10251/161850
dc.description.abstract [EN] Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river basin boundaries, large-scale hydrological models enable a coordinated, efficient, and harmonized anticipation and management of water-related risks (droughts, floods). However, the use of forecasts from such models at the river basin scale remains a challenge, depending on how the model reproduces the hydrological features of each particular river basin. Consequently, postprocessing of forecasts is a crucial step to ensure usefulness at the river basin scale. In this paper we present a methodology to postprocess seasonal streamflow forecasts from large-scale hydrological models and advance their quality for local applications. It consists of fuzzy logic systems that bias-adjust seasonal forecasts from a large-scale hydrological model by comparing its modeled streamflows with local observations. The methodology is demonstrated using forecasts from the pan-European hydrological model E-HYPE at the Jucar River basin (Spain). Fuzzy postprocessed forecasts are compared to postprocessed forecasts derived from a quantile mapping approach as a benchmark. Fuzzy postprocessing was able to provide skillful streamflow forecasts for the Jucar River basin, keeping most of the skill of raw E-HYPE forecasts and also outperforming quantile-mapping-based forecasts. The proposed methodology offers an efficient one-to-one mapping between large-scale modeled streamflows and basin-scale observations preserving its temporal dependence structure and can adapt its input set to increase the skill of postprocessed forecasts. es_ES
dc.description.sponsorship This study was partially funded by the EU Horizon 2020 programme under the IMPREX research and innovation project (grant agreement no. 641.811), by the European Research Area for Climate Services programme (ER4CS) under the INNOVA project (Grant Agreement 690462), by the ADAPTAMED project (RTI2018-101483-B-I00) from the Ministerio de Ciencia, Innovacion Universidades (MICINN) of Spain, and by the postdoctoral program of Universitat Politecnica de Valencia (PAID 10-18). Funding was also received from the EU Horizon 2020 project S2S4E (Sub -seasonal to Seasonal forecasting for the Energy sector) under Grant Agreement 776787. This study was also partially funded by the EU Horizon 2020 project CLARA under the Grant Agreement 730482. es_ES
dc.language Inglés es_ES
dc.publisher American Meteorological Society es_ES
dc.relation.ispartof Journal of Hydrometeorology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Seasonal forecasting es_ES
dc.subject Hydrologic models es_ES
dc.subject Mesoscale models es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1175/JHM-D-19-0266.1 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-10-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PCIN-2017-066/ES/INNOVACION EN LA PROVISION DE SERVICIOS CLIMATICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/730482/EU/Climate forecast enabled knowledge services/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/776787/EU/Sub-seasonal to Seasonal climate forecasting for Energy/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Macian-Sorribes, H.; Pechlivanidis, I.; Crochemore, L.; Pulido-Velazquez, M. (2020). Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management. Journal of Hydrometeorology. 21(10):2375-2389. https://doi.org/10.1175/JHM-D-19-0266.1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1175/JHM-D-19-0266.1 es_ES
dc.description.upvformatpinicio 2375 es_ES
dc.description.upvformatpfin 2389 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\422799 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027 es_ES
dc.description.references Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., … Pappenberger, F. (2016). Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game. Hydrology and Earth System Sciences, 20(8), 3109-3128. doi:10.5194/hess-20-3109-2016 es_ES
dc.description.references Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., & Pappenberger, F. (2017). An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 18(6), 1715-1729. doi:10.1175/jhm-d-16-0259.1 es_ES
dc.description.references Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., … Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 22(4), 2057-2072. doi:10.5194/hess-22-2057-2018 es_ES
dc.description.references Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622. doi:10.1002/2015wr018247 es_ES
dc.description.references Berg, P., Donnelly, C., & Gustafsson, D. (2018). Near-real-time adjusted reanalysis forcing data for hydrology. Hydrology and Earth System Sciences, 22(2), 989-1000. doi:10.5194/hess-22-989-2018 es_ES
dc.description.references Brown, C., & Rogers, P. (2006). Effect of Forecast-Based Pricing on Irrigated Agriculture: A Simulation. Journal of Water Resources Planning and Management, 132(6), 403-413. doi:10.1061/(asce)0733-9496(2006)132:6(403) es_ES
dc.description.references Contreras, E., Herrero, J., Crochemore, L., Pechlivanidis, I., Photiadou, C., Aguilar, C., & Polo, M. J. (2020). Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies, 13(7), 1827. doi:10.3390/en13071827 es_ES
dc.description.references Crochemore, L., Ramos, M.-H., Pappenberger, F., Andel, S. J. van, & Wood, A. W. (2016). An Experiment on Risk-Based Decision-Making in Water Management Using Monthly Probabilistic Forecasts. Bulletin of the American Meteorological Society, 97(4), 541-551. doi:10.1175/bams-d-14-00270.1 es_ES
dc.description.references Crochemore, L., Ramos, M. ‐H., & Pechlivanidis, I. G. (2020). Can Continental Models Convey Useful Seasonal Hydrologic Information at the Catchment Scale? Water Resources Research, 56(2). doi:10.1029/2019wr025700 es_ES
dc.description.references Dobson, B., Wagener, T., & Pianosi, F. (2019). An argument-driven classification and comparison of reservoir operation optimization methods. Advances in Water Resources, 128, 74-86. doi:10.1016/j.advwatres.2019.04.012 es_ES
dc.description.references Donnelly, C., Andersson, J. C. M., & Arheimer, B. (2015). Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2), 255-273. doi:10.1080/02626667.2015.1027710 es_ES
dc.description.references Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571 es_ES
dc.description.references Foster, K., Bertacchi Uvo, C., & Olsson, J. (2018). The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers. Hydrology and Earth System Sciences, 22(5), 2953-2970. doi:10.5194/hess-22-2953-2018 es_ES
dc.description.references Giuliani, M., Crochemore, L., Pechlivanidis, I., & Castelletti, A. (2020). From skill to value: isolating the influence of end user behavior on seasonal forecast assessment. Hydrology and Earth System Sciences, 24(12), 5891-5902. doi:10.5194/hess-24-5891-2020 es_ES
dc.description.references Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., & Zhu, X. (2018). Short-Term Water Demand Forecast Based on Deep Learning Method. Journal of Water Resources Planning and Management, 144(12), 04018076. doi:10.1061/(asce)wr.1943-5452.0000992 es_ES
dc.description.references Hersbach, H. (2000). Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather and Forecasting, 15(5), 559-570. doi:10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2 es_ES
dc.description.references Hundecha, Y., Arheimer, B., Donnelly, C., & Pechlivanidis, I. (2016). A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies, 6, 90-111. doi:10.1016/j.ejrh.2016.04.002 es_ES
dc.description.references Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., … Monge-Sanz, B. M. (2019). SEAS5: the new ECMWF seasonal forecast system. Geoscientific Model Development, 12(3), 1087-1117. doi:10.5194/gmd-12-1087-2019 es_ES
dc.description.references Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. doi:10.5194/hess-17-2845-2013 es_ES
dc.description.references Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011 es_ES
dc.description.references Lavers, D. A., Ramos, M.-H., Magnusson, L., Pechlivanidis, I., Klein, B., Prudhomme, C., … Pappenberger, F. (2020). A Vision for Hydrological Prediction. Atmosphere, 11(3), 237. doi:10.3390/atmos11030237 es_ES
dc.description.references Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., & Di, Z. (2017). A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. WIREs Water, 4(6). doi:10.1002/wat2.1246 es_ES
dc.description.references Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017 es_ES
dc.description.references Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research, 41(3-4), 295-319. doi:10.2166/nh.2010.007 es_ES
dc.description.references Macian-Sorribes, H., & Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a Multireservoir System. Journal of Water Resources Planning and Management, 143(1), 04016069. doi:10.1061/(asce)wr.1943-5452.0000712 es_ES
dc.description.references MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., … Madec, G. (2014). Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141(689), 1072-1084. doi:10.1002/qj.2396 es_ES
dc.description.references Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., … Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3). doi:10.1029/2009rg000314 es_ES
dc.description.references Matheson, J. E., & Winkler, R. L. (1976). Scoring Rules for Continuous Probability Distributions. Management Science, 22(10), 1087-1096. doi:10.1287/mnsc.22.10.1087 es_ES
dc.description.references Meißner, D., Klein, B., & Ionita, M. (2017). Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrology and Earth System Sciences, 21(12), 6401-6423. doi:10.5194/hess-21-6401-2017 es_ES
dc.description.references Nazemi, A., & Wheater, H. S. (2015). On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 19(1), 33-61. doi:10.5194/hess-19-33-2015 es_ES
dc.description.references Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S., Theofanidi, S., & Cloke, H. L. (2018). Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity. Geoscience Communication, 1(1), 35-57. doi:10.5194/gc-1-35-2018 es_ES
dc.description.references Neumann, J., Arnal, L., Magnusson, L., & Cloke, H. (2018). The 2013/14 Thames Basin Floods: Do Improved Meteorological Forecasts Lead to More Skillful Hydrological Forecasts at Seasonal Time Scales? Journal of Hydrometeorology, 19(6), 1059-1075. doi:10.1175/jhm-d-17-0182.1 es_ES
dc.description.references Pechlivanidis, I. G., & Arheimer, B. (2015). Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences, 19(11), 4559-4579. doi:10.5194/hess-19-4559-2015 es_ES
dc.description.references Pianosi, F., & Soncini-Sessa, R. (2009). Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resources Research, 45(10). doi:10.1029/2008wr007335 es_ES
dc.description.references Pina, J., Tilmant, A., & Côté, P. (2017). Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables. Water Resources Research, 53(11), 9845-9859. doi:10.1002/2017wr021701 es_ES
dc.description.references Ramos, M.-H., Bartholmes, J., & Thielen-del Pozo, J. (2007). Development of decision support products based on ensemble forecasts in the European flood alert system. Atmospheric Science Letters, 8(4), 113-119. doi:10.1002/asl.161 es_ES
dc.description.references Rani, D., & Moreira, M. M. (2009). Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation. Water Resources Management, 24(6), 1107-1138. doi:10.1007/s11269-009-9488-0 es_ES
dc.description.references Raso, L., & Malaterre, P. O. (2017). Combining Short-Term and Long-Term Reservoir Operation Using Infinite Horizon Model Predictive Control. Journal of Irrigation and Drainage Engineering, 143(3). doi:10.1061/(asce)ir.1943-4774.0001063 es_ES
dc.description.references Russell, S. O., & Campbell, P. F. (1996). Reservoir Operating Rules with Fuzzy Programming. Journal of Water Resources Planning and Management, 122(3), 165-170. doi:10.1061/(asce)0733-9496(1996)122:3(165) es_ES
dc.description.references Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5). doi:10.1029/2008wr007327 es_ES
dc.description.references Shrestha, B. P., Duckstein, L., & Stakhiv, E. Z. (1996). Fuzzy Rule-Based Modeling of Reservoir Operation. Journal of Water Resources Planning and Management, 122(4), 262-269. doi:10.1061/(asce)0733-9496(1996)122:4(262) es_ES
dc.description.references Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2). doi:10.1029/2007gl032487 es_ES
dc.description.references Shukla, S., Sheffield, J., Wood, E. F., & Lettenmaier, D. P. (2013). On the sources of global land surface hydrologic predictability. Hydrology and Earth System Sciences, 17(7), 2781-2796. doi:10.5194/hess-17-2781-2013 es_ES
dc.description.references Sreekanth, J., Datta, B., & Mohapatra, P. K. (2012). Optimal Short-term Reservoir Operation with Integrated Long-term Goals. Water Resources Management, 26(10), 2833-2850. doi:10.1007/s11269-012-0051-z es_ES
dc.description.references Teutschbein, C., Wetterhall, F., & Seibert, J. (2011). Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 37(9-10), 2087-2105. doi:10.1007/s00382-010-0979-8 es_ES
dc.description.references Turan, M. E., & Yurdusev, M. A. (2015). Fuzzy Conceptual Hydrological Model for Water Flow Prediction. Water Resources Management, 30(2), 653-667. doi:10.1007/s11269-015-1183-8 es_ES
dc.description.references Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L., & Wood, E. F. (2019). Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System. Journal of Hydrometeorology, 20(1), 99-115. doi:10.1175/jhm-d-18-0040.1 es_ES
dc.description.references Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M., & Pappenberger, E. (2015). Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrology and Earth System Sciences, 19(6), 2577-2586. doi:10.5194/hess-19-2577-2015 es_ES
dc.description.references Wood, A. W., & Lettenmaier, D. P. (2008). An ensemble approach for attribution of hydrologic prediction uncertainty. Geophysical Research Letters, 35(14). doi:10.1029/2008gl034648 es_ES
dc.description.references Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., & Clark, M. (2016). Quantifying Streamflow Forecast Skill Elasticity to Initial Condition and Climate Prediction Skill. Journal of Hydrometeorology, 17(2), 651-668. doi:10.1175/jhm-d-14-0213.1 es_ES
dc.description.references Wu, X., Cheng, C., Zeng, Y., & Lund, J. R. (2016). Centralized versus Distributed Cooperative Operating Rules for Multiple Cascaded Hydropower Reservoirs. Journal of Water Resources Planning and Management, 142(11), 05016008. doi:10.1061/(asce)wr.1943-5452.0000685 es_ES
dc.description.references Yang, W., Andréasson, J., Phil Graham, L., Olsson, J., Rosberg, J., & Wetterhall, F. (2010). Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, 41(3-4), 211-229. doi:10.2166/nh.2010.004 es_ES
dc.subject.ods 06.- Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem