- -

Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management

Mostrar el registro completo del ítem

Macian-Sorribes, H.; Pechlivanidis, I.; Crochemore, L.; Pulido-Velazquez, M. (2020). Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management. Journal of Hydrometeorology. 21(10):2375-2389. https://doi.org/10.1175/JHM-D-19-0266.1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161850

Ficheros en el ítem

Metadatos del ítem

Título: Fuzzy Postprocessing to Advance the Quality of Continental Seasonal Hydrological Forecasts for River Basin Management
Autor: Macian-Sorribes, Hector Pechlivanidis, Ilias Crochemore, Louise Pulido-Velazquez, M.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Streamflow forecasting services driven by seasonal meteorological forecasts from dynamic prediction systems deliver valuable information for decision-making in the water sector. Moving beyond the traditional river ...[+]
Palabras clave: Seasonal forecasting , Hydrologic models , Mesoscale models
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Hydrometeorology. (issn: 1525-755X )
DOI: 10.1175/JHM-D-19-0266.1
Editorial:
American Meteorological Society
Versión del editor: https://doi.org/10.1175/JHM-D-19-0266.1
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/
...[+]
info:eu-repo/grantAgreement/EC/H2020/641811/EU/IMproving PRedictions and management of hydrological EXtremes/
info:eu-repo/grantAgreement/UPV//PAID-10-18/
info:eu-repo/grantAgreement/EC/H2020/690462/EU/European Research Area for Climate Services/
info:eu-repo/grantAgreement/AEI//PCIN-2017-066/ES/INNOVACION EN LA PROVISION DE SERVICIOS CLIMATICOS/
info:eu-repo/grantAgreement/EC/H2020/730482/EU/Climate forecast enabled knowledge services/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101483-B-I00/ES/PLANIFICACION, DISEÑO Y EVALUACION DE LA ADAPTACION DE CUENCAS MEDITERRANEAS A ESCENARIOS SOCIOECONOMICOS Y DE CAMBIO CLIMATICO/
info:eu-repo/grantAgreement/EC/H2020/776787/EU/Sub-seasonal to Seasonal climate forecasting for Energy/
[-]
Agradecimientos:
This study was partially funded by the EU Horizon 2020 programme under the IMPREX research and innovation project (grant agreement no. 641.811), by the European Research Area for Climate Services programme (ER4CS) under ...[+]
Tipo: Artículo

References

Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027

Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., … Pappenberger, F. (2016). Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game. Hydrology and Earth System Sciences, 20(8), 3109-3128. doi:10.5194/hess-20-3109-2016

Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., & Pappenberger, F. (2017). An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 18(6), 1715-1729. doi:10.1175/jhm-d-16-0259.1 [+]
Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Kløve, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733-752. doi:10.1016/j.jhydrol.2015.03.027

Arnal, L., Ramos, M.-H., Coughlan de Perez, E., Cloke, H. L., Stephens, E., Wetterhall, F., … Pappenberger, F. (2016). Willingness-to-pay for a probabilistic flood forecast: a risk-based decision-making game. Hydrology and Earth System Sciences, 20(8), 3109-3128. doi:10.5194/hess-20-3109-2016

Arnal, L., Wood, A. W., Stephens, E., Cloke, H. L., & Pappenberger, F. (2017). An Efficient Approach for Estimating Streamflow Forecast Skill Elasticity. Journal of Hydrometeorology, 18(6), 1715-1729. doi:10.1175/jhm-d-16-0259.1

Arnal, L., Cloke, H. L., Stephens, E., Wetterhall, F., Prudhomme, C., Neumann, J., … Pappenberger, F. (2018). Skilful seasonal forecasts of streamflow over Europe? Hydrology and Earth System Sciences, 22(4), 2057-2072. doi:10.5194/hess-22-2057-2018

Beck, H. E., van Dijk, A. I. J. M., de Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., & Bruijnzeel, L. A. (2016). Global-scale regionalization of hydrologic model parameters. Water Resources Research, 52(5), 3599-3622. doi:10.1002/2015wr018247

Berg, P., Donnelly, C., & Gustafsson, D. (2018). Near-real-time adjusted reanalysis forcing data for hydrology. Hydrology and Earth System Sciences, 22(2), 989-1000. doi:10.5194/hess-22-989-2018

Brown, C., & Rogers, P. (2006). Effect of Forecast-Based Pricing on Irrigated Agriculture: A Simulation. Journal of Water Resources Planning and Management, 132(6), 403-413. doi:10.1061/(asce)0733-9496(2006)132:6(403)

Contreras, E., Herrero, J., Crochemore, L., Pechlivanidis, I., Photiadou, C., Aguilar, C., & Polo, M. J. (2020). Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies, 13(7), 1827. doi:10.3390/en13071827

Crochemore, L., Ramos, M.-H., Pappenberger, F., Andel, S. J. van, & Wood, A. W. (2016). An Experiment on Risk-Based Decision-Making in Water Management Using Monthly Probabilistic Forecasts. Bulletin of the American Meteorological Society, 97(4), 541-551. doi:10.1175/bams-d-14-00270.1

Crochemore, L., Ramos, M. ‐H., & Pechlivanidis, I. G. (2020). Can Continental Models Convey Useful Seasonal Hydrologic Information at the Catchment Scale? Water Resources Research, 56(2). doi:10.1029/2019wr025700

Dobson, B., Wagener, T., & Pianosi, F. (2019). An argument-driven classification and comparison of reservoir operation optimization methods. Advances in Water Resources, 128, 74-86. doi:10.1016/j.advwatres.2019.04.012

Donnelly, C., Andersson, J. C. M., & Arheimer, B. (2015). Using flow signatures and catchment similarities to evaluate the E-HYPE multi-basin model across Europe. Hydrological Sciences Journal, 61(2), 255-273. doi:10.1080/02626667.2015.1027710

Ficchì, A., Raso, L., Dorchies, D., Pianosi, F., Malaterre, P.-O., Van Overloop, P.-J., & Jay-Allemand, M. (2016). Optimal Operation of the Multireservoir System in the Seine River Basin Using Deterministic and Ensemble Forecasts. Journal of Water Resources Planning and Management, 142(1), 05015005. doi:10.1061/(asce)wr.1943-5452.0000571

Foster, K., Bertacchi Uvo, C., & Olsson, J. (2018). The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers. Hydrology and Earth System Sciences, 22(5), 2953-2970. doi:10.5194/hess-22-2953-2018

Giuliani, M., Crochemore, L., Pechlivanidis, I., & Castelletti, A. (2020). From skill to value: isolating the influence of end user behavior on seasonal forecast assessment. Hydrology and Earth System Sciences, 24(12), 5891-5902. doi:10.5194/hess-24-5891-2020

Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., & Zhu, X. (2018). Short-Term Water Demand Forecast Based on Deep Learning Method. Journal of Water Resources Planning and Management, 144(12), 04018076. doi:10.1061/(asce)wr.1943-5452.0000992

Hersbach, H. (2000). Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems. Weather and Forecasting, 15(5), 559-570. doi:10.1175/1520-0434(2000)015<0559:dotcrp>2.0.co;2

Hundecha, Y., Arheimer, B., Donnelly, C., & Pechlivanidis, I. (2016). A regional parameter estimation scheme for a pan-European multi-basin model. Journal of Hydrology: Regional Studies, 6, 90-111. doi:10.1016/j.ejrh.2016.04.002

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., … Monge-Sanz, B. M. (2019). SEAS5: the new ECMWF seasonal forecast system. Geoscientific Model Development, 12(3), 1087-1117. doi:10.5194/gmd-12-1087-2019

Kauffeldt, A., Halldin, S., Rodhe, A., Xu, C.-Y., & Westerberg, I. K. (2013). Disinformative data in large-scale hydrological modelling. Hydrology and Earth System Sciences, 17(7), 2845-2857. doi:10.5194/hess-17-2845-2013

Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. doi:10.1016/j.jhydrol.2012.01.011

Lavers, D. A., Ramos, M.-H., Magnusson, L., Pechlivanidis, I., Klein, B., Prudhomme, C., … Pappenberger, F. (2020). A Vision for Hydrological Prediction. Atmosphere, 11(3), 237. doi:10.3390/atmos11030237

Li, W., Duan, Q., Miao, C., Ye, A., Gong, W., & Di, Z. (2017). A review on statistical postprocessing methods for hydrometeorological ensemble forecasting. WIREs Water, 4(6). doi:10.1002/wat2.1246

Li, Y., Giuliani, M., & Castelletti, A. (2017). A coupled human–natural system to assess the operational value of weather and climate services for agriculture. Hydrology and Earth System Sciences, 21(9), 4693-4709. doi:10.5194/hess-21-4693-2017

Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., & Arheimer, B. (2010). Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research, 41(3-4), 295-319. doi:10.2166/nh.2010.007

Macian-Sorribes, H., & Pulido-Velazquez, M. (2017). Integrating Historical Operating Decisions and Expert Criteria into a DSS for the Management of a Multireservoir System. Journal of Water Resources Planning and Management, 143(1), 04016069. doi:10.1061/(asce)wr.1943-5452.0000712

MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., … Madec, G. (2014). Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141(689), 1072-1084. doi:10.1002/qj.2396

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., … Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3). doi:10.1029/2009rg000314

Matheson, J. E., & Winkler, R. L. (1976). Scoring Rules for Continuous Probability Distributions. Management Science, 22(10), 1087-1096. doi:10.1287/mnsc.22.10.1087

Meißner, D., Klein, B., & Ionita, M. (2017). Development of a monthly to seasonal forecast framework tailored to inland waterway transport in central Europe. Hydrology and Earth System Sciences, 21(12), 6401-6423. doi:10.5194/hess-21-6401-2017

Nazemi, A., & Wheater, H. S. (2015). On inclusion of water resource management in Earth system models – Part 1: Problem definition and representation of water demand. Hydrology and Earth System Sciences, 19(1), 33-61. doi:10.5194/hess-19-33-2015

Neumann, J. L., Arnal, L., Emerton, R. E., Griffith, H., Hyslop, S., Theofanidi, S., & Cloke, H. L. (2018). Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity. Geoscience Communication, 1(1), 35-57. doi:10.5194/gc-1-35-2018

Neumann, J., Arnal, L., Magnusson, L., & Cloke, H. (2018). The 2013/14 Thames Basin Floods: Do Improved Meteorological Forecasts Lead to More Skillful Hydrological Forecasts at Seasonal Time Scales? Journal of Hydrometeorology, 19(6), 1059-1075. doi:10.1175/jhm-d-17-0182.1

Pechlivanidis, I. G., & Arheimer, B. (2015). Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case. Hydrology and Earth System Sciences, 19(11), 4559-4579. doi:10.5194/hess-19-4559-2015

Pianosi, F., & Soncini-Sessa, R. (2009). Real-time management of a multipurpose water reservoir with a heteroscedastic inflow model. Water Resources Research, 45(10). doi:10.1029/2008wr007335

Pina, J., Tilmant, A., & Côté, P. (2017). Optimizing Multireservoir System Operating Policies Using Exogenous Hydrologic Variables. Water Resources Research, 53(11), 9845-9859. doi:10.1002/2017wr021701

Ramos, M.-H., Bartholmes, J., & Thielen-del Pozo, J. (2007). Development of decision support products based on ensemble forecasts in the European flood alert system. Atmospheric Science Letters, 8(4), 113-119. doi:10.1002/asl.161

Rani, D., & Moreira, M. M. (2009). Simulation–Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation. Water Resources Management, 24(6), 1107-1138. doi:10.1007/s11269-009-9488-0

Raso, L., & Malaterre, P. O. (2017). Combining Short-Term and Long-Term Reservoir Operation Using Infinite Horizon Model Predictive Control. Journal of Irrigation and Drainage Engineering, 143(3). doi:10.1061/(asce)ir.1943-4774.0001063

Russell, S. O., & Campbell, P. F. (1996). Reservoir Operating Rules with Fuzzy Programming. Journal of Water Resources Planning and Management, 122(3), 165-170. doi:10.1061/(asce)0733-9496(1996)122:3(165)

Samaniego, L., Kumar, R., & Attinger, S. (2010). Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale. Water Resources Research, 46(5). doi:10.1029/2008wr007327

Shrestha, B. P., Duckstein, L., & Stakhiv, E. Z. (1996). Fuzzy Rule-Based Modeling of Reservoir Operation. Journal of Water Resources Planning and Management, 122(4), 262-269. doi:10.1061/(asce)0733-9496(1996)122:4(262)

Shukla, S., & Wood, A. W. (2008). Use of a standardized runoff index for characterizing hydrologic drought. Geophysical Research Letters, 35(2). doi:10.1029/2007gl032487

Shukla, S., Sheffield, J., Wood, E. F., & Lettenmaier, D. P. (2013). On the sources of global land surface hydrologic predictability. Hydrology and Earth System Sciences, 17(7), 2781-2796. doi:10.5194/hess-17-2781-2013

Sreekanth, J., Datta, B., & Mohapatra, P. K. (2012). Optimal Short-term Reservoir Operation with Integrated Long-term Goals. Water Resources Management, 26(10), 2833-2850. doi:10.1007/s11269-012-0051-z

Teutschbein, C., Wetterhall, F., & Seibert, J. (2011). Evaluation of different downscaling techniques for hydrological climate-change impact studies at the catchment scale. Climate Dynamics, 37(9-10), 2087-2105. doi:10.1007/s00382-010-0979-8

Turan, M. E., & Yurdusev, M. A. (2015). Fuzzy Conceptual Hydrological Model for Water Flow Prediction. Water Resources Management, 30(2), 653-667. doi:10.1007/s11269-015-1183-8

Wanders, N., Thober, S., Kumar, R., Pan, M., Sheffield, J., Samaniego, L., & Wood, E. F. (2019). Development and Evaluation of a Pan-European Multimodel Seasonal Hydrological Forecasting System. Journal of Hydrometeorology, 20(1), 99-115. doi:10.1175/jhm-d-18-0040.1

Wetterhall, F., Winsemius, H. C., Dutra, E., Werner, M., & Pappenberger, E. (2015). Seasonal predictions of agro-meteorological drought indicators for the Limpopo basin. Hydrology and Earth System Sciences, 19(6), 2577-2586. doi:10.5194/hess-19-2577-2015

Wood, A. W., & Lettenmaier, D. P. (2008). An ensemble approach for attribution of hydrologic prediction uncertainty. Geophysical Research Letters, 35(14). doi:10.1029/2008gl034648

Wood, A. W., Hopson, T., Newman, A., Brekke, L., Arnold, J., & Clark, M. (2016). Quantifying Streamflow Forecast Skill Elasticity to Initial Condition and Climate Prediction Skill. Journal of Hydrometeorology, 17(2), 651-668. doi:10.1175/jhm-d-14-0213.1

Wu, X., Cheng, C., Zeng, Y., & Lund, J. R. (2016). Centralized versus Distributed Cooperative Operating Rules for Multiple Cascaded Hydropower Reservoirs. Journal of Water Resources Planning and Management, 142(11), 05016008. doi:10.1061/(asce)wr.1943-5452.0000685

Yang, W., Andréasson, J., Phil Graham, L., Olsson, J., Rosberg, J., & Wetterhall, F. (2010). Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, 41(3-4), 211-229. doi:10.2166/nh.2010.004

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem