- -

Preconditioners for rank deficient least squares problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preconditioners for rank deficient least squares problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerdán Soriano, Juana Mercedes es_ES
dc.contributor.author Guerrero, D. es_ES
dc.contributor.author Marín Mateos-Aparicio, José es_ES
dc.contributor.author Mas Marí, José es_ES
dc.date.accessioned 2021-02-19T04:33:51Z
dc.date.available 2021-02-19T04:33:51Z
dc.date.issued 2020-07 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161853
dc.description.abstract [EN] In this paper we present a method for computing sparse preconditioners for iteratively solving rank deficient least squares problems (LS) by the LSMR method. The main idea of the method proposed is to update an incomplete factorization computed for a regularized problem to recover the solution of the original one. The numerical experiments for a wide set of matrices arising from different science and engineering applications show that the preconditioner proposed, in most cases, can be successfully applied to accelerate the convergence of the iterative Krylov subspace method. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad, Spain under grants MTM2017-85669-P and MTM2017-90682-REDT. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Iterative methods es_ES
dc.subject Rank deficient es_ES
dc.subject Sparse linear systems es_ES
dc.subject Preconditioning es_ES
dc.subject Linear least squares problems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Preconditioners for rank deficient least squares problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2019.112621 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cerdán Soriano, JM.; Guerrero, D.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2020). Preconditioners for rank deficient least squares problems. Journal of Computational and Applied Mathematics. 372:1-11. https://doi.org/10.1016/j.cam.2019.112621 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2019.112621 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 372 es_ES
dc.relation.pasarela S\413884 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989 es_ES
dc.description.references Paige, C. C., & Saunders, M. A. (1982). Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems. ACM Transactions on Mathematical Software, 8(2), 195-209. doi:10.1145/355993.356000 es_ES
dc.description.references Golub, G., & Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205-224. doi:10.1137/0702016 es_ES
dc.description.references Fong, D. C.-L., & Saunders, M. (2011). LSMR: An Iterative Algorithm for Sparse Least-Squares Problems. SIAM Journal on Scientific Computing, 33(5), 2950-2971. doi:10.1137/10079687x es_ES
dc.description.references Scott, J. (2017). On Using Cholesky-Based Factorizations and Regularization for Solving Rank-Deficient Sparse Linear Least-Squares Problems. SIAM Journal on Scientific Computing, 39(4), C319-C339. doi:10.1137/16m1065380 es_ES
dc.description.references HSL, A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/. es_ES
dc.description.references Li, N., & Saad, Y. (2006). MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least‐Squares Problems. SIAM Journal on Matrix Analysis and Applications, 28(2), 524-550. doi:10.1137/050633032 es_ES
dc.description.references Benzi, M., & T?ma, M. (2003). A robust incomplete factorization preconditioner for positive definite matrices. Numerical Linear Algebra with Applications, 10(5-6), 385-400. doi:10.1002/nla.320 es_ES
dc.description.references Hayami, K., Yin, J.-F., & Ito, T. (2010). GMRES Methods for Least Squares Problems. SIAM Journal on Matrix Analysis and Applications, 31(5), 2400-2430. doi:10.1137/070696313 es_ES
dc.description.references R. Bru, J. Marín, J. Mas, M. Tůma, Preconditioned iterative methods for solving linear least squares problems, SIAM J. Sci. Comput. 36 (4). es_ES
dc.description.references Gould, N., & Scott, J. (2017). The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems. ACM Transactions on Mathematical Software, 43(4), 1-35. doi:10.1145/3014057 es_ES
dc.description.references Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6 es_ES
dc.description.references Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663 es_ES
dc.description.references Pothen, A., & Fan, C.-J. (1990). Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 16(4), 303-324. doi:10.1145/98267.98287 es_ES
dc.description.references Arridge, S. R., Betcke, M. M., & Harhanen, L. (2014). Iterated preconditioned LSQR method for inverse problems on unstructured grids. Inverse Problems, 30(7), 075009. doi:10.1088/0266-5611/30/7/075009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem