Mostrar el registro sencillo del ítem
dc.contributor.author | Cerdán Soriano, Juana Mercedes | es_ES |
dc.contributor.author | Guerrero, D. | es_ES |
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | Mas Marí, José | es_ES |
dc.date.accessioned | 2021-02-19T04:33:51Z | |
dc.date.available | 2021-02-19T04:33:51Z | |
dc.date.issued | 2020-07 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161853 | |
dc.description.abstract | [EN] In this paper we present a method for computing sparse preconditioners for iteratively solving rank deficient least squares problems (LS) by the LSMR method. The main idea of the method proposed is to update an incomplete factorization computed for a regularized problem to recover the solution of the original one. The numerical experiments for a wide set of matrices arising from different science and engineering applications show that the preconditioner proposed, in most cases, can be successfully applied to accelerate the convergence of the iterative Krylov subspace method. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia, Industria y Competitividad, Spain under grants MTM2017-85669-P and MTM2017-90682-REDT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Rank deficient | es_ES |
dc.subject | Sparse linear systems | es_ES |
dc.subject | Preconditioning | es_ES |
dc.subject | Linear least squares problems | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Preconditioners for rank deficient least squares problems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2019.112621 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-85669-P/ES/PROBLEMAS MATRICIALES: COMPUTACION, TEORIA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//MTM2017-90682-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cerdán Soriano, JM.; Guerrero, D.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2020). Preconditioners for rank deficient least squares problems. Journal of Computational and Applied Mathematics. 372:1-11. https://doi.org/10.1016/j.cam.2019.112621 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2019.112621 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 372 | es_ES |
dc.relation.pasarela | S\413884 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989 | es_ES |
dc.description.references | Paige, C. C., & Saunders, M. A. (1982). Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems. ACM Transactions on Mathematical Software, 8(2), 195-209. doi:10.1145/355993.356000 | es_ES |
dc.description.references | Golub, G., & Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205-224. doi:10.1137/0702016 | es_ES |
dc.description.references | Fong, D. C.-L., & Saunders, M. (2011). LSMR: An Iterative Algorithm for Sparse Least-Squares Problems. SIAM Journal on Scientific Computing, 33(5), 2950-2971. doi:10.1137/10079687x | es_ES |
dc.description.references | Scott, J. (2017). On Using Cholesky-Based Factorizations and Regularization for Solving Rank-Deficient Sparse Linear Least-Squares Problems. SIAM Journal on Scientific Computing, 39(4), C319-C339. doi:10.1137/16m1065380 | es_ES |
dc.description.references | HSL, A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/. | es_ES |
dc.description.references | Li, N., & Saad, Y. (2006). MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least‐Squares Problems. SIAM Journal on Matrix Analysis and Applications, 28(2), 524-550. doi:10.1137/050633032 | es_ES |
dc.description.references | Benzi, M., & T?ma, M. (2003). A robust incomplete factorization preconditioner for positive definite matrices. Numerical Linear Algebra with Applications, 10(5-6), 385-400. doi:10.1002/nla.320 | es_ES |
dc.description.references | Hayami, K., Yin, J.-F., & Ito, T. (2010). GMRES Methods for Least Squares Problems. SIAM Journal on Matrix Analysis and Applications, 31(5), 2400-2430. doi:10.1137/070696313 | es_ES |
dc.description.references | R. Bru, J. Marín, J. Mas, M. Tůma, Preconditioned iterative methods for solving linear least squares problems, SIAM J. Sci. Comput. 36 (4). | es_ES |
dc.description.references | Gould, N., & Scott, J. (2017). The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems. ACM Transactions on Mathematical Software, 43(4), 1-35. doi:10.1145/3014057 | es_ES |
dc.description.references | Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6 | es_ES |
dc.description.references | Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663 | es_ES |
dc.description.references | Pothen, A., & Fan, C.-J. (1990). Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 16(4), 303-324. doi:10.1145/98267.98287 | es_ES |
dc.description.references | Arridge, S. R., Betcke, M. M., & Harhanen, L. (2014). Iterated preconditioned LSQR method for inverse problems on unstructured grids. Inverse Problems, 30(7), 075009. doi:10.1088/0266-5611/30/7/075009 | es_ES |