Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989
Paige, C. C., & Saunders, M. A. (1982). Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems. ACM Transactions on Mathematical Software, 8(2), 195-209. doi:10.1145/355993.356000
Golub, G., & Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205-224. doi:10.1137/0702016
[+]
Paige, C. C., & Saunders, M. A. (1982). LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares. ACM Transactions on Mathematical Software, 8(1), 43-71. doi:10.1145/355984.355989
Paige, C. C., & Saunders, M. A. (1982). Algorithm 583: LSQR: Sparse Linear Equations and Least Squares Problems. ACM Transactions on Mathematical Software, 8(2), 195-209. doi:10.1145/355993.356000
Golub, G., & Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205-224. doi:10.1137/0702016
Fong, D. C.-L., & Saunders, M. (2011). LSMR: An Iterative Algorithm for Sparse Least-Squares Problems. SIAM Journal on Scientific Computing, 33(5), 2950-2971. doi:10.1137/10079687x
Scott, J. (2017). On Using Cholesky-Based Factorizations and Regularization for Solving Rank-Deficient Sparse Linear Least-Squares Problems. SIAM Journal on Scientific Computing, 39(4), C319-C339. doi:10.1137/16m1065380
HSL, A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/.
Li, N., & Saad, Y. (2006). MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least‐Squares Problems. SIAM Journal on Matrix Analysis and Applications, 28(2), 524-550. doi:10.1137/050633032
Benzi, M., & T?ma, M. (2003). A robust incomplete factorization preconditioner for positive definite matrices. Numerical Linear Algebra with Applications, 10(5-6), 385-400. doi:10.1002/nla.320
Hayami, K., Yin, J.-F., & Ito, T. (2010). GMRES Methods for Least Squares Problems. SIAM Journal on Matrix Analysis and Applications, 31(5), 2400-2430. doi:10.1137/070696313
R. Bru, J. Marín, J. Mas, M. Tůma, Preconditioned iterative methods for solving linear least squares problems, SIAM J. Sci. Comput. 36 (4).
Gould, N., & Scott, J. (2017). The State-of-the-Art of Preconditioners for Sparse Linear Least-Squares Problems. ACM Transactions on Mathematical Software, 43(4), 1-35. doi:10.1145/3014057
Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6
Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663
Pothen, A., & Fan, C.-J. (1990). Computing the block triangular form of a sparse matrix. ACM Transactions on Mathematical Software, 16(4), 303-324. doi:10.1145/98267.98287
Arridge, S. R., Betcke, M. M., & Harhanen, L. (2014). Iterated preconditioned LSQR method for inverse problems on unstructured grids. Inverse Problems, 30(7), 075009. doi:10.1088/0266-5611/30/7/075009
[-]