- -

A general class of four parametric with and without memory iterative methods for nonlinear equations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

A general class of four parametric with and without memory iterative methods for nonlinear equations

Show simple item record

Files in this item

dc.contributor.author Zafar, Fiza es_ES
dc.contributor.author Cordero Barbero, Alicia es_ES
dc.contributor.author Torregrosa Sánchez, Juan Ramón es_ES
dc.contributor.author Rafi, Aneeqa es_ES
dc.date.accessioned 2021-02-19T04:33:58Z
dc.date.available 2021-02-19T04:33:58Z
dc.date.issued 2019-05 es_ES
dc.identifier.issn 0259-9791 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161855
dc.description.abstract [EN] In this paper, we have constructed a derivative-free weighted eighth-order iterative class of methods with and without-memory for solving nonlinear equations. These methods are optimal as they satisfy Kung-Traub's conjecture. We have used four accelerating parameters, univariate and multivariate weight functions at the second and third step of the method respectively. This family of schemes is converted into with-memory one by approximating the parameters using Newton's interpolating polynomials of appropriate degree to increase the order of convergence to 15.51560 and the efficiency index is nearly two. Numerical and dynamical comparison of our methods is done with some recent methods of the same order applying them on some applied problems from chemical engineering, such as fractional conversion in a chemical reactor. The stability of the proposed schemes and their comparison with existing ones is made by using dynamical planes of the different methods, showing the wideness of the sets of converging initial estimations for all the test functions. The proposed schemes show to have good stability properties, as in their eighth-order version as well as in the case of methods with memory. es_ES
dc.description.sponsorship This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Mathematical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nonlinear equations es_ES
dc.subject Iterative method with and without memory es_ES
dc.subject Basin of attraction es_ES
dc.subject Order of convergence es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A general class of four parametric with and without memory iterative methods for nonlinear equations es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/s10910-018-00996-w es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A general class of four parametric with and without memory iterative methods for nonlinear equations. Journal of Mathematical Chemistry. 57(5):1448-1471. https://doi.org/10.1007/s10910-018-00996-w es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) es_ES
dc.relation.conferencedate Julio 09-14,2018 es_ES
dc.relation.conferenceplace Rota, Spain es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10910-018-00996-w es_ES
dc.description.upvformatpinicio 1448 es_ES
dc.description.upvformatpfin 1471 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\393536 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Schlumberger Foundation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013) es_ES
dc.description.references A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018) es_ES
dc.description.references J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972) es_ES
dc.description.references J. Herzberger, Über Matrixdarstellungen für Iterationverfahren bei nichtlinearen Gleichungen. Computing 12(3), 215–222 (1974) es_ES
dc.description.references L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) es_ES
dc.description.references R.F. King, A family of fourth order methods for non-linear equations. SIAM J. Numer. Anal. 10(5), 876–879 (1973) es_ES
dc.description.references T. Lotfi, P. Assari, New three- and four-parametric iterative with-memory methods with efficiency index near 2. Appl. Math. 270, 1004–1010 (2015) es_ES
dc.description.references M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986) es_ES
dc.description.references I.F. Steffensen, Remarks on iteration. Skand. Aktuarietidskr. 16, 64–72 (1933) es_ES
dc.description.references J.F. Traub, Iterative Methods for the Solution of Equations (Prentice Hall, New York, 1964) es_ES
dc.description.references F. Zafar, S. Akram, N. Yasmin, M. Junjua, On the construction of three step derivative free four-parametric methods with accelerated order of convergence. J. Nonlinear Sci. Appl. 9, 4542–4553 (2016) es_ES


This item appears in the following Collection(s)

Show simple item record