dc.contributor.author |
Zafar, Fiza
|
es_ES |
dc.contributor.author |
Cordero Barbero, Alicia
|
es_ES |
dc.contributor.author |
Torregrosa Sánchez, Juan Ramón
|
es_ES |
dc.contributor.author |
Rafi, Aneeqa
|
es_ES |
dc.date.accessioned |
2021-02-19T04:33:58Z |
|
dc.date.available |
2021-02-19T04:33:58Z |
|
dc.date.issued |
2019-05 |
es_ES |
dc.identifier.issn |
0259-9791 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/161855 |
|
dc.description.abstract |
[EN] In this paper, we have constructed a derivative-free weighted eighth-order iterative class of methods with and without-memory for solving nonlinear equations. These methods are optimal as they satisfy Kung-Traub's conjecture. We have used four accelerating parameters, univariate and multivariate weight functions at the second and third step of the method respectively. This family of schemes is converted into with-memory one by approximating the parameters using Newton's interpolating polynomials of appropriate degree to increase the order of convergence to 15.51560 and the efficiency index is nearly two. Numerical and dynamical comparison of our methods is done with some recent methods of the same order applying them on some applied problems from chemical engineering, such as fractional conversion in a chemical reactor. The stability of the proposed schemes and their comparison with existing ones is made by using dynamical planes of the different methods, showing the wideness of the sets of converging initial estimations for all the test functions. The proposed schemes show to have good stability properties, as in their eighth-order version as well as in the case of methods with memory. |
es_ES |
dc.description.sponsorship |
This research was partially supported by Ministerio de Economia y Competitividad MTM2014-52016-C2-2-P, Generalitat Valenciana PROMETEO/2016/089 and Schlumberger Foundation-Faculty for Future Program. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
Springer-Verlag |
es_ES |
dc.relation.ispartof |
Journal of Mathematical Chemistry |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Nonlinear equations |
es_ES |
dc.subject |
Iterative method with and without memory |
es_ES |
dc.subject |
Basin of attraction |
es_ES |
dc.subject |
Order of convergence |
es_ES |
dc.subject.classification |
MATEMATICA APLICADA |
es_ES |
dc.title |
A general class of four parametric with and without memory iterative methods for nonlinear equations |
es_ES |
dc.type |
Artículo |
es_ES |
dc.type |
Comunicación en congreso |
es_ES |
dc.identifier.doi |
10.1007/s10910-018-00996-w |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MINECO//MTM2014-52016-C2-2-P/ES/DISEÑO DE METODOS ITERATIVOS EFICIENTES PARA RESOLVER PROBLEMAS NO LINEALES: CONVERGENCIA, COMPORTAMIENTO DINAMICO Y APLICACIONES. ECUACIONES MATRICIALES./ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/ |
es_ES |
dc.rights.accessRights |
Cerrado |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada |
es_ES |
dc.description.bibliographicCitation |
Zafar, F.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Rafi, A. (2019). A general class of four parametric with and without memory iterative methods for nonlinear equations. Journal of Mathematical Chemistry. 57(5):1448-1471. https://doi.org/10.1007/s10910-018-00996-w |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.conferencename |
18th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2018) |
es_ES |
dc.relation.conferencedate |
Julio 09-14,2018 |
es_ES |
dc.relation.conferenceplace |
Rota, Spain |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1007/s10910-018-00996-w |
es_ES |
dc.description.upvformatpinicio |
1448 |
es_ES |
dc.description.upvformatpfin |
1471 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
57 |
es_ES |
dc.description.issue |
5 |
es_ES |
dc.relation.pasarela |
S\393536 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Schlumberger Foundation |
es_ES |
dc.contributor.funder |
Ministerio de Economía y Competitividad |
es_ES |
dc.description.references |
F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013) |
es_ES |
dc.description.references |
A. Cordero, M. Junjua, J.R. Torregrosa, N. Yasmin, F. Zafar, Efficient four parametric with and without-memory iterative methods possessing high efficiency indices. Math. Probl. Eng. 2018, 12 (2018) |
es_ES |
dc.description.references |
J.M. Douglas, Process Dynamics and Control, vol. 2 (Prentice Hall, Englewood Cliffs, NJ, 1972) |
es_ES |
dc.description.references |
J. Herzberger, Über Matrixdarstellungen für Iterationverfahren bei nichtlinearen Gleichungen. Computing 12(3), 215–222 (1974) |
es_ES |
dc.description.references |
L.O. Jay, A note on Q-order of convergence. BIT Numer. Math. 41, 422–429 (2001) |
es_ES |
dc.description.references |
R.F. King, A family of fourth order methods for non-linear equations. SIAM J. Numer. Anal. 10(5), 876–879 (1973) |
es_ES |
dc.description.references |
T. Lotfi, P. Assari, New three- and four-parametric iterative with-memory methods with efficiency index near 2. Appl. Math. 270, 1004–1010 (2015) |
es_ES |
dc.description.references |
M. Shacham, Numerical solution of constrained nonlinear algebraic equations. Int. J. Numer. Method Eng. 23, 1455–1481 (1986) |
es_ES |
dc.description.references |
I.F. Steffensen, Remarks on iteration. Skand. Aktuarietidskr. 16, 64–72 (1933) |
es_ES |
dc.description.references |
J.F. Traub, Iterative Methods for the Solution of Equations (Prentice Hall, New York, 1964) |
es_ES |
dc.description.references |
F. Zafar, S. Akram, N. Yasmin, M. Junjua, On the construction of three step derivative free four-parametric methods with accelerated order of convergence. J. Nonlinear Sci. Appl. 9, 4542–4553 (2016) |
es_ES |