- -

Orpiment under compression: metavalent bonding at high pressure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Orpiment under compression: metavalent bonding at high pressure

Mostrar el registro completo del ítem

Cuenca-Gotor, VP.; Sans-Tresserras, JÁ.; Gomis, O.; Mujica, A.; Radescu, S.; Muñoz, A.; Rodríguez-Hernández, P.... (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics. 22(6):3352-3369. https://doi.org/10.1039/c9cp06298j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161859

Ficheros en el ítem

Metadatos del ítem

Título: Orpiment under compression: metavalent bonding at high pressure
Autor: Cuenca-Gotor, Vanesa Paula Sans-Tresserras, Juan Ángel Gomis, O. Mujica, Andres Radescu, Silvana Muñoz, Alfonso Rodríguez-Hernández, Plácida Da Silva, Estelina Lora Popescu, Catalin Ibañez, Jordi Vilaplana Cerda, Rosario Isabel Manjón, Francisco-Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada
Fecha difusión:
Resumen:
[EN] We report a joint experimental and theoretical study of the structural, vibrational, and electronic properties of layered monoclinic arsenic sulfide crystals (a-As2S3), aka mineral orpiment, under compression. X-ray ...[+]
Palabras clave: Orpiment , Metavalent bonding , High pressure , X-ray diffraction , Raman scattering
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/c9cp06298j
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c9cp06298j
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/785789/EU/COmputational Modelling for EXtreme conditions/
...[+]
info:eu-repo/grantAgreement/EC/H2020/785789/EU/COmputational Modelling for EXtreme conditions/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/
info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//ID 2019073649/
info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//ID 2016071772/
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/
info:eu-repo/grantAgreement/RES//QCM-2018-3-0032/
info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/
info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/
info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/
[-]
Agradecimientos:
The authors are thankful for the financial support from Spanish Ministerio de Economia y Competitividad (MINECO) through MAT2016-75586-C4-2/3-P, FIS2017-83295-P and MALTA Consolider Team project (RED2018-102612-T). Also ...[+]
Tipo: Artículo

References

J. D. Smith , J. C.Bailar , H. J.Emeléus and R.Nyholm , The Chemistry of Arsenic, Antimony and Bismuth , Pergamon Texts in Inorganic Chemistry , 1973 , vol. 2

Pliny the Elder, Naturalis Historia , ed. J. Bostock and H. T. Riley , Taylor and Francis , London , 1855 , ch. 22

E. W. Fitzhugh , Orpiment and Realgar, in Artists’ Pigments , A Handbook of Their History and Characteristics , Oxford University Press , 1997 , vol. 3, pp. 47–80 [+]
J. D. Smith , J. C.Bailar , H. J.Emeléus and R.Nyholm , The Chemistry of Arsenic, Antimony and Bismuth , Pergamon Texts in Inorganic Chemistry , 1973 , vol. 2

Pliny the Elder, Naturalis Historia , ed. J. Bostock and H. T. Riley , Taylor and Francis , London , 1855 , ch. 22

E. W. Fitzhugh , Orpiment and Realgar, in Artists’ Pigments , A Handbook of Their History and Characteristics , Oxford University Press , 1997 , vol. 3, pp. 47–80

Spurrell, F. C. J. (1895). Notes on Egyptian Colours. Archaeological Journal, 52(1), 222-239. doi:10.1080/00665983.1895.10852669

Burgio, L., & Clark, R. J. H. (2000). Comparative pigment analysis of six modern Egyptian papyri and an authentic one of the 13th centuryBC by Raman microscopy and other techniques. Journal of Raman Spectroscopy, 31(5), 395-401. doi:10.1002/1097-4555(200005)31:5<395::aid-jrs527>3.0.co;2-e

Waxman, S., & Anderson, K. C. (2001). History of the Development of Arsenic Derivatives in Cancer Therapy. The Oncologist, 6(S2), 3-10. doi:10.1634/theoncologist.6-suppl_2-3

Ding, W., Tong, Y., Zhang, X., Pan, M., & Chen, S. (2016). Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53. Scientific Reports, 6(1). doi:10.1038/srep19793

J. Heo and W. J.Chung , Rare-earth-doped chalcogenide glass for lasers and amplifiers , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 347–380

D. W. Hewak , N. I.Zheludev and K. F.MacDonald , Controlling light on the nanoscale with chalcogenide thin films , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 471–508

MORIMOTO, N. (1954). THE CRYSTAL STRUCTURE OF ORPIMENT (As2S3) REFINED. Mineralogical Journal, 1(3), 160-169. doi:10.2465/minerj1953.1.160

Mullen, D. J. E., & Nowacki, W. (1972). Refinement of the crystal structures of realgar, AsS and orpiment, As2S3*. Zeitschrift für Kristallographie, 136(1-2), 48-65. doi:10.1524/zkri.1972.136.1-2.48

Kampf, A. R., Downs, R. T., Housley, R. M., Jenkins, R. A., & Hyršl, J. (2011). Anorpiment, As2S3, the triclinic dimorph of orpiment. Mineralogical Magazine, 75(6), 2857-2867. doi:10.1180/minmag.2011.075.6.2857

Gibbs, G. V., Wallace, A. F., Zallen, R., Downs, R. T., Ross, N. L., Cox, D. F., & Rosso, K. M. (2010). Bond Paths and van der Waals Interactions in Orpiment, As2S3. The Journal of Physical Chemistry A, 114(23), 6550-6557. doi:10.1021/jp102391a

Cheng, H., Zhou, Y., & Frost, R. L. (2017). Structure comparison of Orpiment and Realgar by Raman spectroscopy. Spectroscopy Letters, 50(1), 23-29. doi:10.1080/00387010.2016.1277359

Porto, S. P. S., & Wood, D. L. (1962). Ruby Optical Maser as a Raman Source. Journal of the Optical Society of America, 52(3), 251. doi:10.1364/josa.52.000251

Weber, A., & Porto, S. P. S. (1965). He–Ne Laser as a Light Source for High-Resolution Raman Spectroscopy. Journal of the Optical Society of America, 55(8), 1033. doi:10.1364/josa.55.001033

Ward, A. T. (1968). Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. The Journal of Physical Chemistry, 72(12), 4133-4139. doi:10.1021/j100858a031

Scheuermann, W., & Ritter, G. J. (1969). Raman Spectra of Cinnabar (HgS), Realgar (As4S4) and Orpiment (As2S3). Zeitschrift für Naturforschung A, 24(3), 408-411. doi:10.1515/zna-1969-0317

Zallen, R., Slade, M. L., & Ward, A. T. (1971). Lattice Vibrations and Interlayer Interactions in CrystallineAs2S3andAs2Se3. Physical Review B, 3(12), 4257-4273. doi:10.1103/physrevb.3.4257

Zallen, R., & Slade, M. (1974). Rigid-layer modes in chalcogenide crystals. Physical Review B, 9(4), 1627-1637. doi:10.1103/physrevb.9.1627

Zallen, R. (1974). Pressure-Raman effects and vibrational scaling laws in molecular crystals:S8andAs2S3. Physical Review B, 9(10), 4485-4496. doi:10.1103/physrevb.9.4485

DeFonzo, A. P., & Tauc, J. (1978). Network dynamics of 3:2 coordinated compounds. Physical Review B, 18(12), 6957-6972. doi:10.1103/physrevb.18.6957

Razzetti, C., & Lottici, P. P. (1979). Polarization analysis of the Raman spectrum of As2S3 crystals. Solid State Communications, 29(4), 361-364. doi:10.1016/0038-1098(79)90572-6

Besson, J. M., Cernogora, J., & Zallen, R. (1980). Effect of pressure on optical properties of crystallineAs2S3. Physical Review B, 22(8), 3866-3876. doi:10.1103/physrevb.22.3866

Besson, J. M., Cernogora, J., Slade, M. L., Weinstein, B. A., & Zallen, R. (1981). Pressure effects on the absorption edge, refractive index, and Raman spectra of crystalline and amorphous As2S3. Physica B+C, 105(1-3), 319-323. doi:10.1016/0378-4363(81)90267-9

Frost, R. L., Martens, W. N., & Kloprogge, J. T. (2002). Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neues Jahrbuch für Mineralogie - Monatshefte, 2002(10), 469-480. doi:10.1127/0028-3649/2002/2002-0469

Mamedov, S., & Drichko, N. (2018). Characterization of 2D As2S3 crystal by Raman spectroscopy. MRS Advances, 3(6-7), 385-390. doi:10.1557/adv.2018.201

Itie, J. P., Polian, A., Grimsditch, M., & Susman, S. (1993). X-Ray Absorption Spectroscopy Investigation of Amorphous and Crystalline As2S3up to 30 GPa. Japanese Journal of Applied Physics, 32(S2), 719. doi:10.7567/jjaps.32s2.719

Zallen, R. (2004). Effect of pressure on optical properties of crystalline As2S3. High Pressure Research, 24(1), 117-118. doi:10.1080/08957950410001661945

Bolotina, N. B., Brazhkin, V. V., Dyuzheva, T. I., Katayama, Y., Kulikova, L. F., Lityagina, L. V., & Nikolaev, N. A. (2014). High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Letters, 98(9), 539-543. doi:10.1134/s0021364013220025

Liu, K., Dai, L., Li, H., Hu, H., Yang, L., Pu, C., … Liu, P. (2019). Phase Transition and Metallization of Orpiment by Raman Spectroscopy, Electrical Conductivity and Theoretical Calculation under High Pressure. Materials, 12(5), 784. doi:10.3390/ma12050784

Kravchenko, E. A., Timofeeva, N. V., & Vinogradova, G. Z. (1980). Crystal modifications of arsenic and antimony sulphides appearing at high pressure and temperature. Journal of Molecular Structure, 58, 253-262. doi:10.1016/0022-2860(80)85027-7

Šiškins, M., Lee, M., Alijani, F., van Blankenstein, M. R., Davidovikj, D., van der Zant, H. S. J., & Steeneken, P. G. (2019). Highly Anisotropic Mechanical and Optical Properties of 2D Layered As2S3 Membranes. ACS Nano, 13(9), 10845-10851. doi:10.1021/acsnano.9b06161

Bao, Z., & Chen, X. (2016). Flexible and Stretchable Devices. Advanced Materials, 28(22), 4177-4179. doi:10.1002/adma.201601422

Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H., & Kim, D.-H. (2018). Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 28(35), 1801834. doi:10.1002/adfm.201801834

Garcia‐Bucio, M. A., Maynez‐Rojas, M. Á., Casanova‐González, E., Cárcamo‐Vega, J. J., Ruvalcaba‐Sil, J. L., & Mitrani, A. (2019). Raman and surface‐enhanced Raman spectroscopy for the analysis of Mexican yellow dyestuff. Journal of Raman Spectroscopy, 50(10), 1546-1554. doi:10.1002/jrs.5729

Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., & Wuttig, M. (2008). Resonant bonding in crystalline phase-change materials. Nature Materials, 7(8), 653-658. doi:10.1038/nmat2226

Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., & Chen, G. (2014). Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5(1). doi:10.1038/ncomms4525

Li, C. W., Hong, J., May, A. F., Bansal, D., Chi, S., Hong, T., … Delaire, O. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics, 11(12), 1063-1069. doi:10.1038/nphys3492

Xu, M., Jakobs, S., Mazzarello, R., Cho, J.-Y., Yang, Z., Hollermann, H., … Wuttig, M. (2017). Impact of Pressure on the Resonant Bonding in Chalcogenides. The Journal of Physical Chemistry C, 121(45), 25447-25454. doi:10.1021/acs.jpcc.7b07546

Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777

Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280

Svensson, C. (1974). The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(2), 458-461. doi:10.1107/s0567740874002986

Stergiou, A. C., & Rentzeperis, P. J. (1985). The crystal structure of arsenic selenide, As2Se3. Zeitschrift für Kristallographie, 173(3-4), 185-191. doi:10.1524/zkri.1985.173.3-4.185

Pertlik, F. (1978). Verfeinerung der Kristallstruktur des Minerals Claudetit, As2O3 (?Claudetit I?). Monatshefte f�r Chemie, 109(2), 277-282. doi:10.1007/bf00906344

Brown, A., & Rundqvist, S. (1965). Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19(4), 684-685. doi:10.1107/s0365110x65004140

Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R. C., & Wang, Y. (2013). Sb2Se3 under pressure. Scientific Reports, 3(1). doi:10.1038/srep02665

Efthimiopoulos, I., Kemichick, J., Zhou, X., Khare, S. V., Ikuta, D., & Wang, Y. (2014). High-Pressure Studies of Bi2S3. The Journal of Physical Chemistry A, 118(9), 1713-1720. doi:10.1021/jp4124666

Ibáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276

Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049

Walsh, A., Payne, D. J., Egdell, R. G., & Watson, G. W. (2011). Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chemical Society Reviews, 40(9), 4455. doi:10.1039/c1cs15098g

Srivastava, P., Singh Mund, H., & Sharma, Y. (2011). Investigation of electronic properties of crystalline arsenic chalcogenides: Theory and experiment. Physica B: Condensed Matter, 406(15-16), 3083-3088. doi:10.1016/j.physb.2011.05.012

Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110

Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411

Siebert, H. (1954). Kraftkonstante und Strukturchemie. V. Struktur der Sauerstoffs�uren. Zeitschrift f�r anorganische und allgemeine Chemie, 275(4-5), 225-240. doi:10.1002/zaac.19542750407

Birch, F. (1938). The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain. Journal of Applied Physics, 9(4), 279-288. doi:10.1063/1.1710417

Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567

S. Haussühl , Physical Properties of Crystals. An Introduction , Wiley-VCH , 2007

R. J. Angel , 2019 , http://www.rossangel.com/text_strain.htm

S. Minomura , K.Aoki , N.Koshizuka and T.Tsushima , High-Pressure Science and Technology , Springer , 1979 , p. 435

Bandyopadhyay, A. K., & Singh, D. B. (1999). Pressure induced phase transformations and band structure of different high pressure phases in tellurium. Pramana, 52(3), 303-319. doi:10.1007/bf02828893

Efthimiopoulos, I., Buchan, C., & Wang, Y. (2016). Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Scientific Reports, 6(1). doi:10.1038/srep24246

Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672

Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110

Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194

Degtyareva, O., Hernández, E. R., Serrano, J., Somayazulu, M., Mao, H., Gregoryanz, E., & Hemley, R. J. (2007). Vibrational dynamics and stability of the high-pressure chain and ring phases in S and Se. The Journal of Chemical Physics, 126(8), 084503. doi:10.1063/1.2433944

Richter, W., Renucci, J. B., & Cardona, M. (1973). Hydrostatic Pressure Dependence of First-Order Raman Frequencies in Se and Te. Physica Status Solidi (b), 56(1), 223-229. doi:10.1002/pssb.2220560120

Aoki, K., Shimomura, O., Minomura, S., Koshizuka, N., & Tsushima, T. (1980). Raman Scattering of Trigonal Se and Te at Very High Pressure. Journal of the Physical Society of Japan, 48(3), 906-911. doi:10.1143/jpsj.48.906

Lucovsky, G. (1972). A comparison of the long wave optical phonons in trigonal Se and trigonal Te. Physica Status Solidi (b), 49(2), 633-641. doi:10.1002/pssb.2220490226

Brown, I. D. (1988). What factors determine cation coordination numbers? Acta Crystallographica Section B Structural Science, 44(6), 545-553. doi:10.1107/s0108768188007712

Dudev, M., Wang, J., Dudev, T., & Lim, C. (2006). Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses. The Journal of Physical Chemistry B, 110(4), 1889-1895. doi:10.1021/jp054975n

Brown, I. D. (2016). Are covalent bonds really directed? American Mineralogist, 101(3), 531-539. doi:10.2138/am-2016-5299

Properzi, L., Polian, A., Munsch, P., & Di Cicco, A. (2013). Investigation of the phase diagram of selenium by means of Raman spectroscopy. High Pressure Research, 33(1), 35-39. doi:10.1080/08957959.2013.769048

Marini, C., Chermisi, D., Lavagnini, M., Di Castro, D., Petrillo, C., Degiorgi, L., … Postorino, P. (2012). High-pressure phases of crystalline tellurium: A combined Raman andab initiostudy. Physical Review B, 86(6). doi:10.1103/physrevb.86.064103

Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V 2 VI 3 or Pn 2 Ch 3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316

Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112

Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900

Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408

Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242

Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970

Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112

Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673

Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159

Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495

Contreras-García, J., Pendás, Á. M., Silvi, B., & Manuel Recio, J. (2008). Useful applications of the electron localization function in high-pressure crystal chemistry. Journal of Physics and Chemistry of Solids, 69(9), 2204-2207. doi:10.1016/j.jpcs.2008.03.028

Contreras-García, J., Pendás, A. M., Recio, J. M., & Silvi, B. (2008). Computation of Local and Global Properties of the Electron Localization Function Topology in Crystals. Journal of Chemical Theory and Computation, 5(1), 164-173. doi:10.1021/ct800420n

Parlinski, K., Li, Z. Q., & Kawazoe, Y. (1997). First-Principles Determination of the Soft Mode in CubicZrO2. Physical Review Letters, 78(21), 4063-4066. doi:10.1103/physrevlett.78.4063

Alfè, D. (2009). PHON: A program to calculate phonons using the small displacement method. Computer Physics Communications, 180(12), 2622-2633. doi:10.1016/j.cpc.2009.03.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem