Mostrar el registro sencillo del ítem
dc.contributor.author | Cuenca-Gotor, Vanesa Paula | es_ES |
dc.contributor.author | Sans-Tresserras, Juan Ángel | es_ES |
dc.contributor.author | Gomis, O. | es_ES |
dc.contributor.author | Mujica, Andres | es_ES |
dc.contributor.author | Radescu, Silvana | es_ES |
dc.contributor.author | Muñoz, Alfonso | es_ES |
dc.contributor.author | Rodríguez-Hernández, Plácida | es_ES |
dc.contributor.author | Da Silva, Estelina Lora | es_ES |
dc.contributor.author | Popescu, Catalin | es_ES |
dc.contributor.author | Ibañez, Jordi | es_ES |
dc.contributor.author | Vilaplana Cerda, Rosario Isabel | es_ES |
dc.contributor.author | Manjón, Francisco-Javier | es_ES |
dc.date.accessioned | 2021-02-19T04:34:06Z | |
dc.date.available | 2021-02-19T04:34:06Z | |
dc.date.issued | 2020-02-14 | es_ES |
dc.identifier.issn | 1463-9076 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/161859 | |
dc.description.abstract | [EN] We report a joint experimental and theoretical study of the structural, vibrational, and electronic properties of layered monoclinic arsenic sulfide crystals (a-As2S3), aka mineral orpiment, under compression. X-ray diffraction and Raman scattering measurements performed on orpiment samples at high pressure and combined with ab initio calculations have allowed us to determine the equation of state and the tentative assignment of the symmetry of many Raman-active modes of orpiment. From our results, we conclude that no first-order phase transition occurs up to 25 GPa at room temperature; however, compression leads to an isostructural phase transition above 20 GPa. In fact, the As coordination increases from threefold at room pressure to more than fivefold above 20 GPa. This increase in coordination can be understood as the transformation from a solid with covalent bonding to a solid with metavalent bonding at high pressure, which results in a progressive decrease of the electronic and optical bandgap, an increase of the dielectric tensor components and Born effective charges, and a considerable softening of many high-frequency optical modes with increasing pressure. Moreover, we propose that the formation of metavalent bonding at high pressures may also explain the behavior of other group-15 sesquichalcogenides under compression. In fact, our results suggest that group-15 sesquichalcogenides either show metavalent bonding at room pressure or undergo a transition from p-type covalent bonding at room pressure towards metavalent bonding at high pressure, as a precursor towards metallic bonding at very high pressure. | es_ES |
dc.description.sponsorship | The authors are thankful for the financial support from Spanish Ministerio de Economia y Competitividad (MINECO) through MAT2016-75586-C4-2/3-P, FIS2017-83295-P and MALTA Consolider Team project (RED2018-102612-T). Also from Generalitat Valenciana under project PROMETEO/2018/123-EFIMAT. ELDS acknowledges the European Union FP7 People: Marie-Curie Actions programme for grant agreement No. 785789-COMEX. JAS also acknowledges the Ramon y Cajal program for funding support through RYC-2015-17482. AM, SR and ELDS are thankful for interesting discussions with J. Contreras-Garcia who taught them how to analyze the ELF. Finally, the authors thank the ALBA Light Source for beam allocation at beamline MSPD (Experiment No. 2013110699) and acknowledge computing time provided by MALTACluster and Red Espan~ola de Supercomputacion (RES) through computer resources at MareNostrum with technical support provided by the Barcelona Supercomputing Center (QCM-2018-3-0032). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Physical Chemistry Chemical Physics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Orpiment | es_ES |
dc.subject | Metavalent bonding | es_ES |
dc.subject | High pressure | es_ES |
dc.subject | X-ray diffraction | es_ES |
dc.subject | Raman scattering | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Orpiment under compression: metavalent bonding at high pressure | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c9cp06298j | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/785789/EU/COmputational Modelling for EXtreme conditions/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//ID 2019073649/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ALBA Synchrotron Light Source//ID 2016071772/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RES//QCM-2018-3-0032/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RED2018-102612-T/ES/MALTA‐CONSOLIDER TEAM/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada | es_ES |
dc.description.bibliographicCitation | Cuenca-Gotor, VP.; Sans-Tresserras, JÁ.; Gomis, O.; Mujica, A.; Radescu, S.; Muñoz, A.; Rodríguez-Hernández, P.... (2020). Orpiment under compression: metavalent bonding at high pressure. Physical Chemistry Chemical Physics. 22(6):3352-3369. https://doi.org/10.1039/c9cp06298j | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c9cp06298j | es_ES |
dc.description.upvformatpinicio | 3352 | es_ES |
dc.description.upvformatpfin | 3369 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 6 | es_ES |
dc.identifier.pmid | 31976513 | es_ES |
dc.relation.pasarela | S\403152 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | ALBA Synchrotron Light Source | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Red Española de Supercomputación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | J. D. Smith , J. C.Bailar , H. J.Emeléus and R.Nyholm , The Chemistry of Arsenic, Antimony and Bismuth , Pergamon Texts in Inorganic Chemistry , 1973 , vol. 2 | es_ES |
dc.description.references | Pliny the Elder, Naturalis Historia , ed. J. Bostock and H. T. Riley , Taylor and Francis , London , 1855 , ch. 22 | es_ES |
dc.description.references | E. W. Fitzhugh , Orpiment and Realgar, in Artists’ Pigments , A Handbook of Their History and Characteristics , Oxford University Press , 1997 , vol. 3, pp. 47–80 | es_ES |
dc.description.references | Spurrell, F. C. J. (1895). Notes on Egyptian Colours. Archaeological Journal, 52(1), 222-239. doi:10.1080/00665983.1895.10852669 | es_ES |
dc.description.references | Burgio, L., & Clark, R. J. H. (2000). Comparative pigment analysis of six modern Egyptian papyri and an authentic one of the 13th centuryBC by Raman microscopy and other techniques. Journal of Raman Spectroscopy, 31(5), 395-401. doi:10.1002/1097-4555(200005)31:5<395::aid-jrs527>3.0.co;2-e | es_ES |
dc.description.references | Waxman, S., & Anderson, K. C. (2001). History of the Development of Arsenic Derivatives in Cancer Therapy. The Oncologist, 6(S2), 3-10. doi:10.1634/theoncologist.6-suppl_2-3 | es_ES |
dc.description.references | Ding, W., Tong, Y., Zhang, X., Pan, M., & Chen, S. (2016). Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53. Scientific Reports, 6(1). doi:10.1038/srep19793 | es_ES |
dc.description.references | J. Heo and W. J.Chung , Rare-earth-doped chalcogenide glass for lasers and amplifiers , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 347–380 | es_ES |
dc.description.references | D. W. Hewak , N. I.Zheludev and K. F.MacDonald , Controlling light on the nanoscale with chalcogenide thin films , Chalcogenide Glasses: Preparation, Properties and Applications , Woodhead Publishing , 2014 , pp. 471–508 | es_ES |
dc.description.references | MORIMOTO, N. (1954). THE CRYSTAL STRUCTURE OF ORPIMENT (As2S3) REFINED. Mineralogical Journal, 1(3), 160-169. doi:10.2465/minerj1953.1.160 | es_ES |
dc.description.references | Mullen, D. J. E., & Nowacki, W. (1972). Refinement of the crystal structures of realgar, AsS and orpiment, As2S3*. Zeitschrift für Kristallographie, 136(1-2), 48-65. doi:10.1524/zkri.1972.136.1-2.48 | es_ES |
dc.description.references | Kampf, A. R., Downs, R. T., Housley, R. M., Jenkins, R. A., & Hyršl, J. (2011). Anorpiment, As2S3, the triclinic dimorph of orpiment. Mineralogical Magazine, 75(6), 2857-2867. doi:10.1180/minmag.2011.075.6.2857 | es_ES |
dc.description.references | Gibbs, G. V., Wallace, A. F., Zallen, R., Downs, R. T., Ross, N. L., Cox, D. F., & Rosso, K. M. (2010). Bond Paths and van der Waals Interactions in Orpiment, As2S3. The Journal of Physical Chemistry A, 114(23), 6550-6557. doi:10.1021/jp102391a | es_ES |
dc.description.references | Cheng, H., Zhou, Y., & Frost, R. L. (2017). Structure comparison of Orpiment and Realgar by Raman spectroscopy. Spectroscopy Letters, 50(1), 23-29. doi:10.1080/00387010.2016.1277359 | es_ES |
dc.description.references | Porto, S. P. S., & Wood, D. L. (1962). Ruby Optical Maser as a Raman Source. Journal of the Optical Society of America, 52(3), 251. doi:10.1364/josa.52.000251 | es_ES |
dc.description.references | Weber, A., & Porto, S. P. S. (1965). He–Ne Laser as a Light Source for High-Resolution Raman Spectroscopy. Journal of the Optical Society of America, 55(8), 1033. doi:10.1364/josa.55.001033 | es_ES |
dc.description.references | Ward, A. T. (1968). Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures. The Journal of Physical Chemistry, 72(12), 4133-4139. doi:10.1021/j100858a031 | es_ES |
dc.description.references | Scheuermann, W., & Ritter, G. J. (1969). Raman Spectra of Cinnabar (HgS), Realgar (As4S4) and Orpiment (As2S3). Zeitschrift für Naturforschung A, 24(3), 408-411. doi:10.1515/zna-1969-0317 | es_ES |
dc.description.references | Zallen, R., Slade, M. L., & Ward, A. T. (1971). Lattice Vibrations and Interlayer Interactions in CrystallineAs2S3andAs2Se3. Physical Review B, 3(12), 4257-4273. doi:10.1103/physrevb.3.4257 | es_ES |
dc.description.references | Zallen, R., & Slade, M. (1974). Rigid-layer modes in chalcogenide crystals. Physical Review B, 9(4), 1627-1637. doi:10.1103/physrevb.9.1627 | es_ES |
dc.description.references | Zallen, R. (1974). Pressure-Raman effects and vibrational scaling laws in molecular crystals:S8andAs2S3. Physical Review B, 9(10), 4485-4496. doi:10.1103/physrevb.9.4485 | es_ES |
dc.description.references | DeFonzo, A. P., & Tauc, J. (1978). Network dynamics of 3:2 coordinated compounds. Physical Review B, 18(12), 6957-6972. doi:10.1103/physrevb.18.6957 | es_ES |
dc.description.references | Razzetti, C., & Lottici, P. P. (1979). Polarization analysis of the Raman spectrum of As2S3 crystals. Solid State Communications, 29(4), 361-364. doi:10.1016/0038-1098(79)90572-6 | es_ES |
dc.description.references | Besson, J. M., Cernogora, J., & Zallen, R. (1980). Effect of pressure on optical properties of crystallineAs2S3. Physical Review B, 22(8), 3866-3876. doi:10.1103/physrevb.22.3866 | es_ES |
dc.description.references | Besson, J. M., Cernogora, J., Slade, M. L., Weinstein, B. A., & Zallen, R. (1981). Pressure effects on the absorption edge, refractive index, and Raman spectra of crystalline and amorphous As2S3. Physica B+C, 105(1-3), 319-323. doi:10.1016/0378-4363(81)90267-9 | es_ES |
dc.description.references | Frost, R. L., Martens, W. N., & Kloprogge, J. T. (2002). Raman spectroscopic study of cinnabar (HgS), realgar (As4S4), and orpiment (As2S3) at 298 and 77K. Neues Jahrbuch für Mineralogie - Monatshefte, 2002(10), 469-480. doi:10.1127/0028-3649/2002/2002-0469 | es_ES |
dc.description.references | Mamedov, S., & Drichko, N. (2018). Characterization of 2D As2S3 crystal by Raman spectroscopy. MRS Advances, 3(6-7), 385-390. doi:10.1557/adv.2018.201 | es_ES |
dc.description.references | Itie, J. P., Polian, A., Grimsditch, M., & Susman, S. (1993). X-Ray Absorption Spectroscopy Investigation of Amorphous and Crystalline As2S3up to 30 GPa. Japanese Journal of Applied Physics, 32(S2), 719. doi:10.7567/jjaps.32s2.719 | es_ES |
dc.description.references | Zallen, R. (2004). Effect of pressure on optical properties of crystalline As2S3. High Pressure Research, 24(1), 117-118. doi:10.1080/08957950410001661945 | es_ES |
dc.description.references | Bolotina, N. B., Brazhkin, V. V., Dyuzheva, T. I., Katayama, Y., Kulikova, L. F., Lityagina, L. V., & Nikolaev, N. A. (2014). High-pressure polymorphism of As2S3 and new AsS2 modification with layered structure. JETP Letters, 98(9), 539-543. doi:10.1134/s0021364013220025 | es_ES |
dc.description.references | Liu, K., Dai, L., Li, H., Hu, H., Yang, L., Pu, C., … Liu, P. (2019). Phase Transition and Metallization of Orpiment by Raman Spectroscopy, Electrical Conductivity and Theoretical Calculation under High Pressure. Materials, 12(5), 784. doi:10.3390/ma12050784 | es_ES |
dc.description.references | Kravchenko, E. A., Timofeeva, N. V., & Vinogradova, G. Z. (1980). Crystal modifications of arsenic and antimony sulphides appearing at high pressure and temperature. Journal of Molecular Structure, 58, 253-262. doi:10.1016/0022-2860(80)85027-7 | es_ES |
dc.description.references | Šiškins, M., Lee, M., Alijani, F., van Blankenstein, M. R., Davidovikj, D., van der Zant, H. S. J., & Steeneken, P. G. (2019). Highly Anisotropic Mechanical and Optical Properties of 2D Layered As2S3 Membranes. ACS Nano, 13(9), 10845-10851. doi:10.1021/acsnano.9b06161 | es_ES |
dc.description.references | Bao, Z., & Chen, X. (2016). Flexible and Stretchable Devices. Advanced Materials, 28(22), 4177-4179. doi:10.1002/adma.201601422 | es_ES |
dc.description.references | Koo, J. H., Kim, D. C., Shim, H. J., Kim, T.-H., & Kim, D.-H. (2018). Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 28(35), 1801834. doi:10.1002/adfm.201801834 | es_ES |
dc.description.references | Garcia‐Bucio, M. A., Maynez‐Rojas, M. Á., Casanova‐González, E., Cárcamo‐Vega, J. J., Ruvalcaba‐Sil, J. L., & Mitrani, A. (2019). Raman and surface‐enhanced Raman spectroscopy for the analysis of Mexican yellow dyestuff. Journal of Raman Spectroscopy, 50(10), 1546-1554. doi:10.1002/jrs.5729 | es_ES |
dc.description.references | Shportko, K., Kremers, S., Woda, M., Lencer, D., Robertson, J., & Wuttig, M. (2008). Resonant bonding in crystalline phase-change materials. Nature Materials, 7(8), 653-658. doi:10.1038/nmat2226 | es_ES |
dc.description.references | Lee, S., Esfarjani, K., Luo, T., Zhou, J., Tian, Z., & Chen, G. (2014). Resonant bonding leads to low lattice thermal conductivity. Nature Communications, 5(1). doi:10.1038/ncomms4525 | es_ES |
dc.description.references | Li, C. W., Hong, J., May, A. F., Bansal, D., Chi, S., Hong, T., … Delaire, O. (2015). Orbitally driven giant phonon anharmonicity in SnSe. Nature Physics, 11(12), 1063-1069. doi:10.1038/nphys3492 | es_ES |
dc.description.references | Xu, M., Jakobs, S., Mazzarello, R., Cho, J.-Y., Yang, Z., Hollermann, H., … Wuttig, M. (2017). Impact of Pressure on the Resonant Bonding in Chalcogenides. The Journal of Physical Chemistry C, 121(45), 25447-25454. doi:10.1021/acs.jpcc.7b07546 | es_ES |
dc.description.references | Wuttig, M., Deringer, V. L., Gonze, X., Bichara, C., & Raty, J.-Y. (2018). Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Advanced Materials, 30(51), 1803777. doi:10.1002/adma.201803777 | es_ES |
dc.description.references | Raty, J., Schumacher, M., Golub, P., Deringer, V. L., Gatti, C., & Wuttig, M. (2018). A Quantum‐Mechanical Map for Bonding and Properties in Solids. Advanced Materials, 31(3), 1806280. doi:10.1002/adma.201806280 | es_ES |
dc.description.references | Svensson, C. (1974). The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30(2), 458-461. doi:10.1107/s0567740874002986 | es_ES |
dc.description.references | Stergiou, A. C., & Rentzeperis, P. J. (1985). The crystal structure of arsenic selenide, As2Se3. Zeitschrift für Kristallographie, 173(3-4), 185-191. doi:10.1524/zkri.1985.173.3-4.185 | es_ES |
dc.description.references | Pertlik, F. (1978). Verfeinerung der Kristallstruktur des Minerals Claudetit, As2O3 (?Claudetit I?). Monatshefte f�r Chemie, 109(2), 277-282. doi:10.1007/bf00906344 | es_ES |
dc.description.references | Brown, A., & Rundqvist, S. (1965). Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 19(4), 684-685. doi:10.1107/s0365110x65004140 | es_ES |
dc.description.references | Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R. C., & Wang, Y. (2013). Sb2Se3 under pressure. Scientific Reports, 3(1). doi:10.1038/srep02665 | es_ES |
dc.description.references | Efthimiopoulos, I., Kemichick, J., Zhou, X., Khare, S. V., Ikuta, D., & Wang, Y. (2014). High-Pressure Studies of Bi2S3. The Journal of Physical Chemistry A, 118(9), 1713-1720. doi:10.1021/jp4124666 | es_ES |
dc.description.references | Ibáñez, J., Sans, J. A., Popescu, C., López-Vidrier, J., Elvira-Betanzos, J. J., Cuenca-Gotor, V. P., … Muñoz, A. (2016). Structural, Vibrational, and Electronic Study of Sb2S3 at High Pressure. The Journal of Physical Chemistry C, 120(19), 10547-10558. doi:10.1021/acs.jpcc.6b01276 | es_ES |
dc.description.references | Cuenca-Gotor, V. P., Sans, J. A., Ibáñez, J., Popescu, C., Gomis, O., Vilaplana, R., … Bergara, A. (2016). Structural, Vibrational, and Electronic Study of α-As2Te3 under Compression. The Journal of Physical Chemistry C, 120(34), 19340-19352. doi:10.1021/acs.jpcc.6b06049 | es_ES |
dc.description.references | Walsh, A., Payne, D. J., Egdell, R. G., & Watson, G. W. (2011). Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chemical Society Reviews, 40(9), 4455. doi:10.1039/c1cs15098g | es_ES |
dc.description.references | Srivastava, P., Singh Mund, H., & Sharma, Y. (2011). Investigation of electronic properties of crystalline arsenic chalcogenides: Theory and experiment. Physica B: Condensed Matter, 406(15-16), 3083-3088. doi:10.1016/j.physb.2011.05.012 | es_ES |
dc.description.references | Kroumova, E., Aroyo, M. I., Perez-Mato, J. M., Kirov, A., Capillas, C., Ivantchev, S., & Wondratschek, H. (2003). Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transitions, 76(1-2), 155-170. doi:10.1080/0141159031000076110 | es_ES |
dc.description.references | Canepa, P., Hanson, R. M., Ugliengo, P., & Alfredsson, M. (2010). J-ICE: a newJmolinterface for handling and visualizing crystallographic and electronic properties. Journal of Applied Crystallography, 44(1), 225-229. doi:10.1107/s0021889810049411 | es_ES |
dc.description.references | Siebert, H. (1954). Kraftkonstante und Strukturchemie. V. Struktur der Sauerstoffs�uren. Zeitschrift f�r anorganische und allgemeine Chemie, 275(4-5), 225-240. doi:10.1002/zaac.19542750407 | es_ES |
dc.description.references | Birch, F. (1938). The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan’s Theory of Finite Strain. Journal of Applied Physics, 9(4), 279-288. doi:10.1063/1.1710417 | es_ES |
dc.description.references | Guńka, P. A., Dranka, M., Hanfland, M., Dziubek, K. F., Katrusiak, A., & Zachara, J. (2015). Cascade of High-Pressure Transitions of Claudetite II and the First Polar Phase of Arsenic(III) Oxide. Crystal Growth & Design, 15(8), 3950-3954. doi:10.1021/acs.cgd.5b00567 | es_ES |
dc.description.references | S. Haussühl , Physical Properties of Crystals. An Introduction , Wiley-VCH , 2007 | es_ES |
dc.description.references | R. J. Angel , 2019 , http://www.rossangel.com/text_strain.htm | es_ES |
dc.description.references | S. Minomura , K.Aoki , N.Koshizuka and T.Tsushima , High-Pressure Science and Technology , Springer , 1979 , p. 435 | es_ES |
dc.description.references | Bandyopadhyay, A. K., & Singh, D. B. (1999). Pressure induced phase transformations and band structure of different high pressure phases in tellurium. Pramana, 52(3), 303-319. doi:10.1007/bf02828893 | es_ES |
dc.description.references | Efthimiopoulos, I., Buchan, C., & Wang, Y. (2016). Structural properties of Sb2S3 under pressure: evidence of an electronic topological transition. Scientific Reports, 6(1). doi:10.1038/srep24246 | es_ES |
dc.description.references | Manjón, F. J., Vilaplana, R., Gomis, O., Pérez-González, E., Santamaría-Pérez, D., Marín-Borrás, V., … Muñoz-Sanjosé, V. (2013). High-pressure studies of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3. physica status solidi (b), 250(4), 669-676. doi:10.1002/pssb.201200672 | es_ES |
dc.description.references | Sans, J. A., Manjón, F. J., Pereira, A. L. J., Vilaplana, R., Gomis, O., Segura, A., … Ruleova, P. (2016). Structural, vibrational, and electrical study of compressed BiTeBr. Physical Review B, 93(2). doi:10.1103/physrevb.93.024110 | es_ES |
dc.description.references | Pereira, A. L. J., Santamaría-Pérez, D., Ruiz-Fuertes, J., Manjón, F. J., Cuenca-Gotor, V. P., Vilaplana, R., … Sans, J. A. (2018). Experimental and Theoretical Study of Bi2O2Se Under Compression. The Journal of Physical Chemistry C, 122(16), 8853-8867. doi:10.1021/acs.jpcc.8b02194 | es_ES |
dc.description.references | Degtyareva, O., Hernández, E. R., Serrano, J., Somayazulu, M., Mao, H., Gregoryanz, E., & Hemley, R. J. (2007). Vibrational dynamics and stability of the high-pressure chain and ring phases in S and Se. The Journal of Chemical Physics, 126(8), 084503. doi:10.1063/1.2433944 | es_ES |
dc.description.references | Richter, W., Renucci, J. B., & Cardona, M. (1973). Hydrostatic Pressure Dependence of First-Order Raman Frequencies in Se and Te. Physica Status Solidi (b), 56(1), 223-229. doi:10.1002/pssb.2220560120 | es_ES |
dc.description.references | Aoki, K., Shimomura, O., Minomura, S., Koshizuka, N., & Tsushima, T. (1980). Raman Scattering of Trigonal Se and Te at Very High Pressure. Journal of the Physical Society of Japan, 48(3), 906-911. doi:10.1143/jpsj.48.906 | es_ES |
dc.description.references | Lucovsky, G. (1972). A comparison of the long wave optical phonons in trigonal Se and trigonal Te. Physica Status Solidi (b), 49(2), 633-641. doi:10.1002/pssb.2220490226 | es_ES |
dc.description.references | Brown, I. D. (1988). What factors determine cation coordination numbers? Acta Crystallographica Section B Structural Science, 44(6), 545-553. doi:10.1107/s0108768188007712 | es_ES |
dc.description.references | Dudev, M., Wang, J., Dudev, T., & Lim, C. (2006). Factors Governing the Metal Coordination Number in Metal Complexes from Cambridge Structural Database Analyses. The Journal of Physical Chemistry B, 110(4), 1889-1895. doi:10.1021/jp054975n | es_ES |
dc.description.references | Brown, I. D. (2016). Are covalent bonds really directed? American Mineralogist, 101(3), 531-539. doi:10.2138/am-2016-5299 | es_ES |
dc.description.references | Properzi, L., Polian, A., Munsch, P., & Di Cicco, A. (2013). Investigation of the phase diagram of selenium by means of Raman spectroscopy. High Pressure Research, 33(1), 35-39. doi:10.1080/08957959.2013.769048 | es_ES |
dc.description.references | Marini, C., Chermisi, D., Lavagnini, M., Di Castro, D., Petrillo, C., Degiorgi, L., … Postorino, P. (2012). High-pressure phases of crystalline tellurium: A combined Raman andab initiostudy. Physical Review B, 86(6). doi:10.1103/physrevb.86.064103 | es_ES |
dc.description.references | Cheng, Y., Cojocaru‐Mirédin, O., Keutgen, J., Yu, Y., Küpers, M., Schumacher, M., … Wuttig, M. (2019). Understanding the Structure and Properties of Sesqui‐Chalcogenides (i.e., V 2 VI 3 or Pn 2 Ch 3 (Pn = Pnictogen, Ch = Chalcogen) Compounds) from a Bonding Perspective. Advanced Materials, 31(43), 1904316. doi:10.1002/adma.201904316 | es_ES |
dc.description.references | Vilaplana, R., Gomis, O., Manjón, F. J., Segura, A., Pérez-González, E., Rodríguez-Hernández, P., … Kucek, V. (2011). High-pressure vibrational and optical study of Bi2Te3. Physical Review B, 84(10). doi:10.1103/physrevb.84.104112 | es_ES |
dc.description.references | Fauth, F., Peral, I., Popescu, C., & Knapp, M. (2013). The new Material Science Powder Diffraction beamline at ALBA Synchrotron. Powder Diffraction, 28(S2), S360-S370. doi:10.1017/s0885715613000900 | es_ES |
dc.description.references | Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 | es_ES |
dc.description.references | Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242 | es_ES |
dc.description.references | Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970 | es_ES |
dc.description.references | Dewaele, A., Loubeyre, P., & Mezouar, M. (2004). Equations of state of six metals above94GPa. Physical Review B, 70(9). doi:10.1103/physrevb.70.094112 | es_ES |
dc.description.references | Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 | es_ES |
dc.description.references | Piermarini, G. J., Block, S., & Barnett, J. D. (1973). Hydrostatic limits in liquids and solids to 100 kbar. Journal of Applied Physics, 44(12), 5377-5382. doi:10.1063/1.1662159 | es_ES |
dc.description.references | Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413 | es_ES |
dc.description.references | Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 | es_ES |
dc.description.references | Kresse, G., & Hafner, J. (1993). Ab initiomolecular dynamics for liquid metals. Physical Review B, 47(1), 558-561. doi:10.1103/physrevb.47.558 | es_ES |
dc.description.references | Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0 | es_ES |
dc.description.references | Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 | es_ES |
dc.description.references | Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865 | es_ES |
dc.description.references | Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406 | es_ES |
dc.description.references | Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 | es_ES |
dc.description.references | Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495 | es_ES |
dc.description.references | Contreras-García, J., Pendás, Á. M., Silvi, B., & Manuel Recio, J. (2008). Useful applications of the electron localization function in high-pressure crystal chemistry. Journal of Physics and Chemistry of Solids, 69(9), 2204-2207. doi:10.1016/j.jpcs.2008.03.028 | es_ES |
dc.description.references | Contreras-García, J., Pendás, A. M., Recio, J. M., & Silvi, B. (2008). Computation of Local and Global Properties of the Electron Localization Function Topology in Crystals. Journal of Chemical Theory and Computation, 5(1), 164-173. doi:10.1021/ct800420n | es_ES |
dc.description.references | Parlinski, K., Li, Z. Q., & Kawazoe, Y. (1997). First-Principles Determination of the Soft Mode in CubicZrO2. Physical Review Letters, 78(21), 4063-4066. doi:10.1103/physrevlett.78.4063 | es_ES |
dc.description.references | Alfè, D. (2009). PHON: A program to calculate phonons using the small displacement method. Computer Physics Communications, 180(12), 2622-2633. doi:10.1016/j.cpc.2009.03.010 | es_ES |