- -

Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent

Mostrar el registro completo del ítem

Gachuz, EJ.; Castillo-Santillán, M.; Juarez-Moreno, C.; Maya Cornejo, J.; Martinez-Richa, A.; Andrio, A.; Compañ Moreno, V.... (2020). Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chemistry. 22(17):5785-5797. https://doi.org/10.1039/d0gc02274h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/161864

Ficheros en el ítem

Metadatos del ítem

Título: Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent
Autor: Gachuz, Edwin J. Castillo-Santillán, Martín Juarez-Moreno, Carla Maya Cornejo, Jose Martinez-Richa, Antonio Andrio, Andreu Compañ Moreno, Vicente Mota-Morales, Josué D.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] A series of semi-interpenetrating polymer networks (semi-IPNs) consisting of crosslinked poly(itaconic acid) in the presence of the polysaccharide inulin were prepared by free-radical polymerization, taking advantage ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/d0gc02274h
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0gc02274h
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//123732/
info:eu-repo/grantAgreement/CONACyT//252774/
info:eu-repo/grantAgreement/UNAM//IA202018/MX/Nanocompositos macroporosos jerárquicos a partir de emulsiones gel “Pickering” estabilizados por biopolímeros usando disolventes eutécticos no acuosos/
info:eu-repo/grantAgreement/UNAM//TA200220/
Agradecimientos:
J. D. M.-M. acknowledges the financial support from the National Council of Science and Technology (CONACYT) through grant no. 252774, and PAPIIT-UNAM project no. IA202018 and TA200220, Mexico. All authors kindly acknowledge ...[+]
Tipo: Artículo

References

Baumgartner, M., Hartmann, F., Drack, M., Preninger, D., Wirthl, D., Gerstmayr, R., … Kaltenbrunner, M. (2020). Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 19(10), 1102-1109. doi:10.1038/s41563-020-0699-3

Le Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev., 40(2), 907-925. doi:10.1039/c0cs00059k

Chakraborty, P., Das, S., & Nandi, A. K. (2019). Conducting gels: A chronicle of technological advances. Progress in Polymer Science, 88, 189-219. doi:10.1016/j.progpolymsci.2018.08.004 [+]
Baumgartner, M., Hartmann, F., Drack, M., Preninger, D., Wirthl, D., Gerstmayr, R., … Kaltenbrunner, M. (2020). Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 19(10), 1102-1109. doi:10.1038/s41563-020-0699-3

Le Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev., 40(2), 907-925. doi:10.1039/c0cs00059k

Chakraborty, P., Das, S., & Nandi, A. K. (2019). Conducting gels: A chronicle of technological advances. Progress in Polymer Science, 88, 189-219. doi:10.1016/j.progpolymsci.2018.08.004

Abbott, A. P., Bell, T. J., Handa, S., & Stoddart, B. (2005). O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chemistry, 7(10), 705. doi:10.1039/b511691k

Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chemical Communications, (1), 70-71. doi:10.1039/b210714g

Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060-11082. doi:10.1021/cr300162p

Mota-Morales, J. D., Sánchez-Leija, R. J., Carranza, A., Pojman, J. A., del Monte, F., & Luna-Bárcenas, G. (2018). Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Progress in Polymer Science, 78, 139-153. doi:10.1016/j.progpolymsci.2017.09.005

Li, R., Fan, T., Chen, G., Zhang, K., Su, B., Tian, J., & He, M. (2020). Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 32(2), 874-881. doi:10.1021/acs.chemmater.9b04592

Ren’ai, L., Zhang, K., Chen, G., Su, B., Tian, J., He, M., & Lu, F. (2018). Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chemical Communications, 54(18), 2304-2307. doi:10.1039/c7cc09209a

Li, R., Chen, G., He, M., Tian, J., & Su, B. (2017). Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. Journal of Materials Chemistry C, 5(33), 8475-8481. doi:10.1039/c7tc02703f

Mukesh, C., Gupta, R., Srivastava, D. N., Nataraj, S. K., & Prasad, K. (2016). Preparation of a natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour. RSC Advances, 6(34), 28586-28592. doi:10.1039/c6ra03309a

Qin, H., & Panzer, M. J. (2017). Chemically Cross‐Linked Poly(2‐hydroxyethyl methacrylate)‐Supported Deep Eutectic Solvent Gel Electrolytes for Eco‐Friendly Supercapacitors. ChemElectroChem, 4(10), 2556-2562. doi:10.1002/celc.201700586

Logan, M. W., Langevin, S., Tan, B., Freeman, A. W., Hoffman, C., Trigg, D. B., & Gerasopoulos, K. (2020). UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. Journal of Materials Chemistry A, 8(17), 8485-8495. doi:10.1039/d0ta01901a

Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 209, 20-37. doi:10.1016/j.carbpol.2018.12.082

Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 18(4), 195-210. doi:10.1038/s41579-019-0313-3

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Qi, X., Watanabe, M., Aida, T. M., & Smith Jr., R. L. (2010). Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chemistry, 12(10), 1855. doi:10.1039/c0gc00141d

Hu, S., Zhang, Z., Song, J., Zhou, Y., & Han, B. (2009). Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 11(11), 1746. doi:10.1039/b914601f

Hu, S., Zhang, Z., Zhou, Y., Song, J., Fan, H., & Han, B. (2009). Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry, 11(6), 873. doi:10.1039/b822328a

Zuo, M., Le, K., Li, Z., Jiang, Y., Zeng, X., Tang, X., … Lin, L. (2017). Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 99, 1-6. doi:10.1016/j.indcrop.2017.01.027

Maugeri, Z., & Domínguez de María, P. (2012). Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv., 2(2), 421-425. doi:10.1039/c1ra00630d

Sapir, L., Stanley, C. B., & Harries, D. (2016). Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent. The Journal of Physical Chemistry A, 120(19), 3253-3259. doi:10.1021/acs.jpca.5b11927

Stefanovic, R., Webber, G. B., & Page, A. J. (2019). Polymer solvation in choline chloride deep eutectic solvents modulated by the hydrogen bond donor. Journal of Molecular Liquids, 279, 584-593. doi:10.1016/j.molliq.2019.02.004

Chen, Z., McDonald, S., FitzGerald, P., Warr, G. G., & Atkin, R. (2017). Small angle neutron scattering study of the conformation of poly(ethylene oxide) dissolved in deep eutectic solvents. Journal of Colloid and Interface Science, 506, 486-492. doi:10.1016/j.jcis.2017.07.068

Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers, 200, 361-380. doi:10.1016/j.carbpol.2018.07.078

Ramírez-Wong, D. G., Ramírez-Cardona, M., Sánchez-Leija, R. J., Rugerio, A., Mauricio-Sánchez, R. A., Hernández-Landaverde, M. A., … Luna-Bárcenas, G. (2016). Sustainable-solvent-induced polymorphism in chitin films. Green Chemistry, 18(15), 4303-4311. doi:10.1039/c6gc00628k

Kim, Y., Faqih, M. ., & Wang, S. . (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46(2), 135-145. doi:10.1016/s0144-8617(00)00296-4

Mota-Morales, J. D., Gutiérrez, M. C., Ferrer, M. L., Sanchez, I. C., Elizalde-Peña, E. A., Pojman, J. A., … Luna-Bárcenas, G. (2013). Deep eutectic solvents as both active fillers and monomers for frontal polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 51(8), 1767-1773. doi:10.1002/pola.26555

Bednarz, S., Fluder, M., Galica, M., Bogdal, D., & Maciejaszek, I. (2014). Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. Journal of Applied Polymer Science, 131(16), n/a-n/a. doi:10.1002/app.40608

Bednarz, S., Kowalski, G., & Konefał, R. (2019). Unexpected irregular structures of poly(itaconic acid) prepared in Deep Eutectic Solvents. European Polymer Journal, 115, 30-36. doi:10.1016/j.eurpolymj.2019.03.021

Sánchez-Leija, R. J., Torres-Lubián, J. R., Reséndiz-Rubio, A., Luna-Bárcenas, G., & Mota-Morales, J. D. (2016). Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Advances, 6(16), 13072-13079. doi:10.1039/c5ra27468k

Castelli, F., Sarpietro, M. G., Micieli, D., Ottimo, S., Pitarresi, G., Tripodo, G., … Giammona, G. (2008). Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. European Journal of Pharmaceutical Sciences, 35(1-2), 76-85. doi:10.1016/j.ejps.2008.06.005

Izawa, K., Akiyama, K., Abe, H., Togashi, Y., & Hasegawa, T. (2013). Inulin-based glycopolymer: Its preparation, lectin-affinity and gellation property. Bioorganic & Medicinal Chemistry, 21(11), 2895-2902. doi:10.1016/j.bmc.2013.03.066

Pitarresi, G., Triolo, D., Giorgi, M., Fiorica, C., Calascibetta, F., & Giammona, G. (2012). Inulin-Based Hydrogel for Oral Delivery of Flutamide: Preparation, Characterization, and in vivo Release Studies. Macromolecular Bioscience, 12(6), 770-778. doi:10.1002/mabi.201200003

Stevens, C. V., Meriggi, A., & Booten, K. (2001). Chemical Modification of Inulin, a Valuable Renewable Resource, and Its Industrial Applications. Biomacromolecules, 2(1), 1-16. doi:10.1021/bm005642t

Chen, W., Bai, X., Xue, Z., Mou, H., Chen, J., Liu, Z., & Mu, T. (2019). The formation and physicochemical properties of PEGylated deep eutectic solvents. New Journal of Chemistry, 43(22), 8804-8810. doi:10.1039/c9nj02196e

Ahmed Rahma, W. S., Mjalli, F. S., Al-Wahaibi, T., & Al-Hashmi, A. A. (2017). Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chemical Engineering Research and Design, 120, 271-283. doi:10.1016/j.cherd.2017.02.025

Mielczarek, K., Łabanowska, M., Kurdziel, M., Konefał, R., Beneš, H., Bujok, S., … Bednarz, S. (2020). High‐Molecular‐Weight Polyampholytes Synthesized via Daylight‐Induced, Initiator‐Free Radical Polymerization of Renewable Itaconic Acid. Macromolecular Rapid Communications, 41(4), 1900611. doi:10.1002/marc.201900611

Afinjuomo, F., Barclay, T. G., Song, Y., Parikh, A., Petrovsky, N., & Garg, S. (2019). Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. Reactive and Functional Polymers, 134, 104-111. doi:10.1016/j.reactfunctpolym.2018.10.014

El Hariri El Nokab, M., & van der Wel, P. C. A. (2020). Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydrate Polymers, 240, 116276. doi:10.1016/j.carbpol.2020.116276

Hackney, J. ., Atalla, R. ., & VanderHart, D. . (1994). Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble β-1,4-linked polysaccharides: 13C-NMR evidence. International Journal of Biological Macromolecules, 16(4), 215-218. doi:10.1016/0141-8130(94)90053-1

Dan, A., Ghosh, S., & Moulik, S. P. (2009). Physicochemical studies on the biopolymer inulin: A critical evaluation of its self-aggregation, aggregate-morphology, interaction with water, and thermal stability. Biopolymers, 91(9), 687-699. doi:10.1002/bip.21199

Lee, S. J., Kim, S. S., & Lee, Y. M. (2000). Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan. Carbohydrate Polymers, 41(2), 197-205. doi:10.1016/s0144-8617(99)00088-0

Teacă, C.-A., Bodîrlău, R., & Spiridon, I. (2013). Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 93(1), 307-315. doi:10.1016/j.carbpol.2012.10.020

Song, M., Hourston, D. J., Pollock, H. M., Schäfer, F. U., & Hammiche, A. (1997). Modulated differential scanning calorimetry: XI. A characterisation method for interpenetrating polymer networks. Thermochimica Acta, 304-305, 335-346. doi:10.1016/s0040-6031(97)00124-x

Şahiner, N., Pekel, N., & Güven, O. (1999). Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. Reactive and Functional Polymers, 39(2), 139-146. doi:10.1016/s1381-5148(97)00150-8

Yue, Y.-M., Xu, K., Liu, X.-G., Chen, Q., Sheng, X., & Wang, P.-X. (2008). Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery. Journal of Applied Polymer Science, 108(6), 3836-3842. doi:10.1002/app.28023

Hernández, R., Pérez, E., Mijangos, C., & López, D. (2005). Poly(vinyl alcohol)–poly(acrylic acid) interpenetrating networks. Study on phase separation and molecular motions. Polymer, 46(18), 7066-7071. doi:10.1016/j.polymer.2005.05.108

Sánchez-Leija, R. J., Pojman, J. A., Luna-Bárcenas, G., & Mota-Morales, J. D. (2014). Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J. Mater. Chem. B, 2(43), 7495-7501. doi:10.1039/c4tb01407c

Hamcerencu, M., Desbrieres, J., Popa, M., & Riess, G. (2012). Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone. Carbohydrate Polymers, 89(2), 438-447. doi:10.1016/j.carbpol.2012.03.026

Micic, M., & Suljovrujic, E. (2013). Network parameters and biocompatibility of p(2-hydroxyethyl methacrylate/itaconic acid/oligo(ethylene glycol) acrylate) dual-responsive hydrogels. European Polymer Journal, 49(10), 3223-3233. doi:10.1016/j.eurpolymj.2013.06.026

Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., … Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444-454. doi:10.1016/j.carbpol.2016.04.020

Nuss, P., & Gardner, K. H. (2012). Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. The International Journal of Life Cycle Assessment, 18(3), 603-612. doi:10.1007/s11367-012-0511-y

Zhong, M., Tang, Q. F., Zhu, Y. W., Chen, X. Y., & Zhang, Z. J. (2020). An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 452, 227847. doi:10.1016/j.jpowsour.2020.227847

Zhen, F., Percevault, L., Paquin, L., Limanton, E., Lagrost, C., & Hapiot, P. (2020). Electron Transfer Kinetics in a Deep Eutectic Solvent. The Journal of Physical Chemistry B, 124(6), 1025-1032. doi:10.1021/acs.jpcb.9b09022

Navarro-Suárez, A. M., & Johansson, P. (2020). Perspective—Semi-Solid Electrolytes Based on Deep Eutectic Solvents: Opportunities and Future Directions. Journal of The Electrochemical Society, 167(7), 070511. doi:10.1149/1945-7111/ab68d3

Z. Xue , W.Zhao and T.Mu , Deep Eutectic Solventes: Synthesis, Properties, and Applications , ed. J. R. Diego and G. Gabriela , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim, Germany , 1st edn, 2020 , Electrochemistry, pp. 335–360

Hong, S., Yuan, Y., Liu, C., Chen, W., Chen, L., Lian, H., & Liimatainen, H. (2020). A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. Journal of Materials Chemistry C, 8(2), 550-560. doi:10.1039/c9tc05913j

Abbott, A. P., Capper, G., & Gray, S. (2006). Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem, 7(4), 803-806. doi:10.1002/cphc.200500489

Kusuma, V. A., Macala, M. K., Liu, J., Marti, A. M., Hirsch, R. J., Hill, L. J., & Hopkinson, D. (2018). Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. Journal of Membrane Science, 545, 292-300. doi:10.1016/j.memsci.2017.09.086

Balo, L., Shalu, Gupta, H., Kumar Singh, V., & Kumar Singh, R. (2017). Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochimica Acta, 230, 123-131. doi:10.1016/j.electacta.2017.01.177

Zhu, M., Yu, L., He, S., Hong, H., Liu, J., Gan, L., & Long, M. (2019). Highly Efficient and Stable Cellulose-Based Ion Gel Polymer Electrolyte for Solid-State Supercapacitors. ACS Applied Energy Materials, 2(8), 5992-6001. doi:10.1021/acsaem.9b01109

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Macdonald, J. R., Evangelista, L. R., Lenzi, E. K., & Barbero, G. (2011). Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson−Nernst−Planck Diffusion Equations for Finite-Length Situations. The Journal of Physical Chemistry C, 115(15), 7648-7655. doi:10.1021/jp200737z

Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4

Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j

Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235

Wagle, D. V., Baker, G. A., & Mamontov, E. (2015). Differential Microscopic Mobility of Components within a Deep Eutectic Solvent. The Journal of Physical Chemistry Letters, 6(15), 2924-2928. doi:10.1021/acs.jpclett.5b01192

Faraone, A., Wagle, D. V., Baker, G. A., Novak, E. C., Ohl, M., Reuter, D., … Mamontov, E. (2018). Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent. The Journal of Physical Chemistry B, 122(3), 1261-1267. doi:10.1021/acs.jpcb.7b11224

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem