- -

Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gachuz, Edwin J. es_ES
dc.contributor.author Castillo-Santillán, Martín es_ES
dc.contributor.author Juarez-Moreno, Carla es_ES
dc.contributor.author Maya Cornejo, Jose es_ES
dc.contributor.author Martinez-Richa, Antonio es_ES
dc.contributor.author Andrio, Andreu es_ES
dc.contributor.author Compañ Moreno, Vicente es_ES
dc.contributor.author Mota-Morales, Josué D. es_ES
dc.date.accessioned 2021-02-19T04:34:17Z
dc.date.available 2021-02-19T04:34:17Z
dc.date.issued 2020-09-07 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/161864
dc.description.abstract [EN] A series of semi-interpenetrating polymer networks (semi-IPNs) consisting of crosslinked poly(itaconic acid) in the presence of the polysaccharide inulin were prepared by free-radical polymerization, taking advantage of the chemistry of deep eutectic systems (DESs). Up to 14 wt% of the polysaccharide inulin readily dissolves in a nonaqueous DES composed of glycerol (Gly) and choline chloride (ChCl). On the other hand, itaconic acid (IA) mixed with ChCl formed a deep eutectic solvent (DES) monomer, which upon free-radical polymerization in solution aided by multifunctional acrylates allowed the synthesis of highly crosslinked polymer networks. Bringing together both DESs, the DES monomer containing IA and the inert one containing inulin dissolved in it, allowed the synthesis of all-natural (ca.96 wt% of biobased components, excluding crosslinkers) and biocompatible semi-IPNs. Remarkably, the DESs entrapped in the semi-IPNs served as a stable nonaqueous electrolyte in the range of 25-75 degrees C, thus exhibiting a typical Arrhenius dependence of conductivity with temperature (an apparent activation energy of 18 kJ mol(-1)), irrespective of the type of crosslinker used. Following electrode polarization (EP) analysis based on the Macdonald-Trukhan model, the free-ion diffusivity, the mobility, and the number of charge carrier density of the polymeric networks were calculated. The results show that diffusivity and mobility increase along with temperature in all semi-IPNs with a maximum conductivity of 3.2 mS cm(-1)at 65 degrees C in the semi-IPN crosslinked with a trifunctional acrylate. The higher conductivity and diffusivity observed in the semi-IPN crosslinked with the trifunctional acrylate in comparison with the difunctional one are related to the long-translational diffusion, because the diffusive dynamics are dominated by the localized motions that are not strongly affected by the confinement of the DES electrolyte within the polymeric network. In summary, this work furthers the applications of DES chemistry towards the fabrication of greener materials,e.g.natural polymers and biobased feedstocks, with future applications in technologies seeking biocompatible conductive gels. es_ES
dc.description.sponsorship J. D. M.-M. acknowledges the financial support from the National Council of Science and Technology (CONACYT) through grant no. 252774, and PAPIIT-UNAM project no. IA202018 and TA200220, Mexico. All authors kindly acknowledge The National Laboratory for Characterization of Physicochemical Properties and Molecular Structure, CONACYT (Grant No. 123732) for the instrumentation time provided, and technical assistance provided by Beatriz Millan-Malo (CFATA-UNAM) in XRD measurements (Laboratorio Nacional de Caracterizacion de Materiales con Certificacion ISO 9001:2015), and Karla A. Barrera-Rivera (UG) for obtaining DSC thermograms. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0gc02274h es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//123732/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//252774/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//IA202018/MX/Nanocompositos macroporosos jerárquicos a partir de emulsiones gel “Pickering” estabilizados por biopolímeros usando disolventes eutécticos no acuosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNAM//TA200220/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Gachuz, EJ.; Castillo-Santillán, M.; Juarez-Moreno, C.; Maya Cornejo, J.; Martinez-Richa, A.; Andrio, A.; Compañ Moreno, V.... (2020). Electrical conductivity of an all-natural and biocompatible semi-interpenetrating polymer network containing a deep eutectic solvent. Green Chemistry. 22(17):5785-5797. https://doi.org/10.1039/d0gc02274h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/d0gc02274h es_ES
dc.description.upvformatpinicio 5785 es_ES
dc.description.upvformatpfin 5797 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\424072 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Baumgartner, M., Hartmann, F., Drack, M., Preninger, D., Wirthl, D., Gerstmayr, R., … Kaltenbrunner, M. (2020). Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Nature Materials, 19(10), 1102-1109. doi:10.1038/s41563-020-0699-3 es_ES
dc.description.references Le Bideau, J., Viau, L., & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev., 40(2), 907-925. doi:10.1039/c0cs00059k es_ES
dc.description.references Chakraborty, P., Das, S., & Nandi, A. K. (2019). Conducting gels: A chronicle of technological advances. Progress in Polymer Science, 88, 189-219. doi:10.1016/j.progpolymsci.2018.08.004 es_ES
dc.description.references Abbott, A. P., Bell, T. J., Handa, S., & Stoddart, B. (2005). O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chemistry, 7(10), 705. doi:10.1039/b511691k es_ES
dc.description.references Abbott, A. P., Capper, G., Davies, D. L., Rasheed, R. K., & Tambyrajah, V. (2002). Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chemical Communications, (1), 70-71. doi:10.1039/b210714g es_ES
dc.description.references Smith, E. L., Abbott, A. P., & Ryder, K. S. (2014). Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 114(21), 11060-11082. doi:10.1021/cr300162p es_ES
dc.description.references Mota-Morales, J. D., Sánchez-Leija, R. J., Carranza, A., Pojman, J. A., del Monte, F., & Luna-Bárcenas, G. (2018). Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Progress in Polymer Science, 78, 139-153. doi:10.1016/j.progpolymsci.2017.09.005 es_ES
dc.description.references Li, R., Fan, T., Chen, G., Zhang, K., Su, B., Tian, J., & He, M. (2020). Autonomous Self-Healing, Antifreezing, and Transparent Conductive Elastomers. Chemistry of Materials, 32(2), 874-881. doi:10.1021/acs.chemmater.9b04592 es_ES
dc.description.references Ren’ai, L., Zhang, K., Chen, G., Su, B., Tian, J., He, M., & Lu, F. (2018). Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits. Chemical Communications, 54(18), 2304-2307. doi:10.1039/c7cc09209a es_ES
dc.description.references Li, R., Chen, G., He, M., Tian, J., & Su, B. (2017). Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. Journal of Materials Chemistry C, 5(33), 8475-8481. doi:10.1039/c7tc02703f es_ES
dc.description.references Mukesh, C., Gupta, R., Srivastava, D. N., Nataraj, S. K., & Prasad, K. (2016). Preparation of a natural deep eutectic solvent mediated self polymerized highly flexible transparent gel having super capacitive behaviour. RSC Advances, 6(34), 28586-28592. doi:10.1039/c6ra03309a es_ES
dc.description.references Qin, H., & Panzer, M. J. (2017). Chemically Cross‐Linked Poly(2‐hydroxyethyl methacrylate)‐Supported Deep Eutectic Solvent Gel Electrolytes for Eco‐Friendly Supercapacitors. ChemElectroChem, 4(10), 2556-2562. doi:10.1002/celc.201700586 es_ES
dc.description.references Logan, M. W., Langevin, S., Tan, B., Freeman, A. W., Hoffman, C., Trigg, D. B., & Gerasopoulos, K. (2020). UV-cured eutectic gel polymer electrolytes for safe and robust Li-ion batteries. Journal of Materials Chemistry A, 8(17), 8485-8495. doi:10.1039/d0ta01901a es_ES
dc.description.references Imre, B., García, L., Puglia, D., & Vilaplana, F. (2019). Reactive compatibilization of plant polysaccharides and biobased polymers: Review on current strategies, expectations and reality. Carbohydrate Polymers, 209, 20-37. doi:10.1016/j.carbpol.2018.12.082 es_ES
dc.description.references Moradali, M. F., & Rehm, B. H. A. (2020). Bacterial biopolymers: from pathogenesis to advanced materials. Nature Reviews Microbiology, 18(4), 195-210. doi:10.1038/s41579-019-0313-3 es_ES
dc.description.references Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638 es_ES
dc.description.references Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004 es_ES
dc.description.references Qi, X., Watanabe, M., Aida, T. M., & Smith Jr., R. L. (2010). Efficient one-pot production of 5-hydroxymethylfurfural from inulin in ionic liquids. Green Chemistry, 12(10), 1855. doi:10.1039/c0gc00141d es_ES
dc.description.references Hu, S., Zhang, Z., Song, J., Zhou, Y., & Han, B. (2009). Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 11(11), 1746. doi:10.1039/b914601f es_ES
dc.description.references Hu, S., Zhang, Z., Zhou, Y., Song, J., Fan, H., & Han, B. (2009). Direct conversion of inulin to 5-hydroxymethylfurfural in biorenewable ionic liquids. Green Chemistry, 11(6), 873. doi:10.1039/b822328a es_ES
dc.description.references Zuo, M., Le, K., Li, Z., Jiang, Y., Zeng, X., Tang, X., … Lin, L. (2017). Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Industrial Crops and Products, 99, 1-6. doi:10.1016/j.indcrop.2017.01.027 es_ES
dc.description.references Maugeri, Z., & Domínguez de María, P. (2012). Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: levulinic acid and sugar-based polyols. RSC Adv., 2(2), 421-425. doi:10.1039/c1ra00630d es_ES
dc.description.references Sapir, L., Stanley, C. B., & Harries, D. (2016). Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent. The Journal of Physical Chemistry A, 120(19), 3253-3259. doi:10.1021/acs.jpca.5b11927 es_ES
dc.description.references Stefanovic, R., Webber, G. B., & Page, A. J. (2019). Polymer solvation in choline chloride deep eutectic solvents modulated by the hydrogen bond donor. Journal of Molecular Liquids, 279, 584-593. doi:10.1016/j.molliq.2019.02.004 es_ES
dc.description.references Chen, Z., McDonald, S., FitzGerald, P., Warr, G. G., & Atkin, R. (2017). Small angle neutron scattering study of the conformation of poly(ethylene oxide) dissolved in deep eutectic solvents. Journal of Colloid and Interface Science, 506, 486-492. doi:10.1016/j.jcis.2017.07.068 es_ES
dc.description.references Zdanowicz, M., Wilpiszewska, K., & Spychaj, T. (2018). Deep eutectic solvents for polysaccharides processing. A review. Carbohydrate Polymers, 200, 361-380. doi:10.1016/j.carbpol.2018.07.078 es_ES
dc.description.references Ramírez-Wong, D. G., Ramírez-Cardona, M., Sánchez-Leija, R. J., Rugerio, A., Mauricio-Sánchez, R. A., Hernández-Landaverde, M. A., … Luna-Bárcenas, G. (2016). Sustainable-solvent-induced polymorphism in chitin films. Green Chemistry, 18(15), 4303-4311. doi:10.1039/c6gc00628k es_ES
dc.description.references Kim, Y., Faqih, M. ., & Wang, S. . (2001). Factors affecting gel formation of inulin. Carbohydrate Polymers, 46(2), 135-145. doi:10.1016/s0144-8617(00)00296-4 es_ES
dc.description.references Mota-Morales, J. D., Gutiérrez, M. C., Ferrer, M. L., Sanchez, I. C., Elizalde-Peña, E. A., Pojman, J. A., … Luna-Bárcenas, G. (2013). Deep eutectic solvents as both active fillers and monomers for frontal polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 51(8), 1767-1773. doi:10.1002/pola.26555 es_ES
dc.description.references Bednarz, S., Fluder, M., Galica, M., Bogdal, D., & Maciejaszek, I. (2014). Synthesis of hydrogels by polymerization of itaconic acid-choline chloride deep eutectic solvent. Journal of Applied Polymer Science, 131(16), n/a-n/a. doi:10.1002/app.40608 es_ES
dc.description.references Bednarz, S., Kowalski, G., & Konefał, R. (2019). Unexpected irregular structures of poly(itaconic acid) prepared in Deep Eutectic Solvents. European Polymer Journal, 115, 30-36. doi:10.1016/j.eurpolymj.2019.03.021 es_ES
dc.description.references Sánchez-Leija, R. J., Torres-Lubián, J. R., Reséndiz-Rubio, A., Luna-Bárcenas, G., & Mota-Morales, J. D. (2016). Enzyme-mediated free radical polymerization of acrylamide in deep eutectic solvents. RSC Advances, 6(16), 13072-13079. doi:10.1039/c5ra27468k es_ES
dc.description.references Castelli, F., Sarpietro, M. G., Micieli, D., Ottimo, S., Pitarresi, G., Tripodo, G., … Giammona, G. (2008). Differential scanning calorimetry study on drug release from an inulin-based hydrogel and its interaction with a biomembrane model: pH and loading effect. European Journal of Pharmaceutical Sciences, 35(1-2), 76-85. doi:10.1016/j.ejps.2008.06.005 es_ES
dc.description.references Izawa, K., Akiyama, K., Abe, H., Togashi, Y., & Hasegawa, T. (2013). Inulin-based glycopolymer: Its preparation, lectin-affinity and gellation property. Bioorganic & Medicinal Chemistry, 21(11), 2895-2902. doi:10.1016/j.bmc.2013.03.066 es_ES
dc.description.references Pitarresi, G., Triolo, D., Giorgi, M., Fiorica, C., Calascibetta, F., & Giammona, G. (2012). Inulin-Based Hydrogel for Oral Delivery of Flutamide: Preparation, Characterization, and in vivo Release Studies. Macromolecular Bioscience, 12(6), 770-778. doi:10.1002/mabi.201200003 es_ES
dc.description.references Stevens, C. V., Meriggi, A., & Booten, K. (2001). Chemical Modification of Inulin, a Valuable Renewable Resource, and Its Industrial Applications. Biomacromolecules, 2(1), 1-16. doi:10.1021/bm005642t es_ES
dc.description.references Chen, W., Bai, X., Xue, Z., Mou, H., Chen, J., Liu, Z., & Mu, T. (2019). The formation and physicochemical properties of PEGylated deep eutectic solvents. New Journal of Chemistry, 43(22), 8804-8810. doi:10.1039/c9nj02196e es_ES
dc.description.references Ahmed Rahma, W. S., Mjalli, F. S., Al-Wahaibi, T., & Al-Hashmi, A. A. (2017). Polymeric-based deep eutectic solvents for effective extractive desulfurization of liquid fuel at ambient conditions. Chemical Engineering Research and Design, 120, 271-283. doi:10.1016/j.cherd.2017.02.025 es_ES
dc.description.references Mielczarek, K., Łabanowska, M., Kurdziel, M., Konefał, R., Beneš, H., Bujok, S., … Bednarz, S. (2020). High‐Molecular‐Weight Polyampholytes Synthesized via Daylight‐Induced, Initiator‐Free Radical Polymerization of Renewable Itaconic Acid. Macromolecular Rapid Communications, 41(4), 1900611. doi:10.1002/marc.201900611 es_ES
dc.description.references Afinjuomo, F., Barclay, T. G., Song, Y., Parikh, A., Petrovsky, N., & Garg, S. (2019). Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. Reactive and Functional Polymers, 134, 104-111. doi:10.1016/j.reactfunctpolym.2018.10.014 es_ES
dc.description.references El Hariri El Nokab, M., & van der Wel, P. C. A. (2020). Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydrate Polymers, 240, 116276. doi:10.1016/j.carbpol.2020.116276 es_ES
dc.description.references Hackney, J. ., Atalla, R. ., & VanderHart, D. . (1994). Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble β-1,4-linked polysaccharides: 13C-NMR evidence. International Journal of Biological Macromolecules, 16(4), 215-218. doi:10.1016/0141-8130(94)90053-1 es_ES
dc.description.references Dan, A., Ghosh, S., & Moulik, S. P. (2009). Physicochemical studies on the biopolymer inulin: A critical evaluation of its self-aggregation, aggregate-morphology, interaction with water, and thermal stability. Biopolymers, 91(9), 687-699. doi:10.1002/bip.21199 es_ES
dc.description.references Lee, S. J., Kim, S. S., & Lee, Y. M. (2000). Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan. Carbohydrate Polymers, 41(2), 197-205. doi:10.1016/s0144-8617(99)00088-0 es_ES
dc.description.references Teacă, C.-A., Bodîrlău, R., & Spiridon, I. (2013). Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films. Carbohydrate Polymers, 93(1), 307-315. doi:10.1016/j.carbpol.2012.10.020 es_ES
dc.description.references Song, M., Hourston, D. J., Pollock, H. M., Schäfer, F. U., & Hammiche, A. (1997). Modulated differential scanning calorimetry: XI. A characterisation method for interpenetrating polymer networks. Thermochimica Acta, 304-305, 335-346. doi:10.1016/s0040-6031(97)00124-x es_ES
dc.description.references Şahiner, N., Pekel, N., & Güven, O. (1999). Radiation synthesis, characterization and amidoximation of N-vinyl-2-pyrrolidone/acrylonitrile interpenetrating polymer networks. Reactive and Functional Polymers, 39(2), 139-146. doi:10.1016/s1381-5148(97)00150-8 es_ES
dc.description.references Yue, Y.-M., Xu, K., Liu, X.-G., Chen, Q., Sheng, X., & Wang, P.-X. (2008). Preparation and characterization of interpenetration polymer network films based on poly(vinyl alcohol) and poly(acrylic acid) for drug delivery. Journal of Applied Polymer Science, 108(6), 3836-3842. doi:10.1002/app.28023 es_ES
dc.description.references Hernández, R., Pérez, E., Mijangos, C., & López, D. (2005). Poly(vinyl alcohol)–poly(acrylic acid) interpenetrating networks. Study on phase separation and molecular motions. Polymer, 46(18), 7066-7071. doi:10.1016/j.polymer.2005.05.108 es_ES
dc.description.references Sánchez-Leija, R. J., Pojman, J. A., Luna-Bárcenas, G., & Mota-Morales, J. D. (2014). Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J. Mater. Chem. B, 2(43), 7495-7501. doi:10.1039/c4tb01407c es_ES
dc.description.references Hamcerencu, M., Desbrieres, J., Popa, M., & Riess, G. (2012). Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone. Carbohydrate Polymers, 89(2), 438-447. doi:10.1016/j.carbpol.2012.03.026 es_ES
dc.description.references Micic, M., & Suljovrujic, E. (2013). Network parameters and biocompatibility of p(2-hydroxyethyl methacrylate/itaconic acid/oligo(ethylene glycol) acrylate) dual-responsive hydrogels. European Polymer Journal, 49(10), 3223-3233. doi:10.1016/j.eurpolymj.2013.06.026 es_ES
dc.description.references Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H. R., … Niazi, S. (2016). Inulin: Properties, health benefits and food applications. Carbohydrate Polymers, 147, 444-454. doi:10.1016/j.carbpol.2016.04.020 es_ES
dc.description.references Nuss, P., & Gardner, K. H. (2012). Attributional life cycle assessment (ALCA) of polyitaconic acid production from northeast US softwood biomass. The International Journal of Life Cycle Assessment, 18(3), 603-612. doi:10.1007/s11367-012-0511-y es_ES
dc.description.references Zhong, M., Tang, Q. F., Zhu, Y. W., Chen, X. Y., & Zhang, Z. J. (2020). An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. Journal of Power Sources, 452, 227847. doi:10.1016/j.jpowsour.2020.227847 es_ES
dc.description.references Zhen, F., Percevault, L., Paquin, L., Limanton, E., Lagrost, C., & Hapiot, P. (2020). Electron Transfer Kinetics in a Deep Eutectic Solvent. The Journal of Physical Chemistry B, 124(6), 1025-1032. doi:10.1021/acs.jpcb.9b09022 es_ES
dc.description.references Navarro-Suárez, A. M., & Johansson, P. (2020). Perspective—Semi-Solid Electrolytes Based on Deep Eutectic Solvents: Opportunities and Future Directions. Journal of The Electrochemical Society, 167(7), 070511. doi:10.1149/1945-7111/ab68d3 es_ES
dc.description.references Z. Xue , W.Zhao and T.Mu , Deep Eutectic Solventes: Synthesis, Properties, and Applications , ed. J. R. Diego and G. Gabriela , Wiley-VCH Verlag GmbH & Co. KGaA , Weinheim, Germany , 1st edn, 2020 , Electrochemistry, pp. 335–360 es_ES
dc.description.references Hong, S., Yuan, Y., Liu, C., Chen, W., Chen, L., Lian, H., & Liimatainen, H. (2020). A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. Journal of Materials Chemistry C, 8(2), 550-560. doi:10.1039/c9tc05913j es_ES
dc.description.references Abbott, A. P., Capper, G., & Gray, S. (2006). Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem, 7(4), 803-806. doi:10.1002/cphc.200500489 es_ES
dc.description.references Kusuma, V. A., Macala, M. K., Liu, J., Marti, A. M., Hirsch, R. J., Hill, L. J., & Hopkinson, D. (2018). Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes. Journal of Membrane Science, 545, 292-300. doi:10.1016/j.memsci.2017.09.086 es_ES
dc.description.references Balo, L., Shalu, Gupta, H., Kumar Singh, V., & Kumar Singh, R. (2017). Flexible gel polymer electrolyte based on ionic liquid EMIMTFSI for rechargeable battery application. Electrochimica Acta, 230, 123-131. doi:10.1016/j.electacta.2017.01.177 es_ES
dc.description.references Zhu, M., Yu, L., He, S., Hong, H., Liu, J., Gan, L., & Long, M. (2019). Highly Efficient and Stable Cellulose-Based Ion Gel Polymer Electrolyte for Solid-State Supercapacitors. ACS Applied Energy Materials, 2(8), 5992-6001. doi:10.1021/acsaem.9b01109 es_ES
dc.description.references Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947 es_ES
dc.description.references Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w es_ES
dc.description.references Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700 es_ES
dc.description.references Macdonald, J. R., Evangelista, L. R., Lenzi, E. K., & Barbero, G. (2011). Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson−Nernst−Planck Diffusion Equations for Finite-Length Situations. The Journal of Physical Chemistry C, 115(15), 7648-7655. doi:10.1021/jp200737z es_ES
dc.description.references Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4 es_ES
dc.description.references Choi, U. H., Mittal, A., Price, T. L., Gibson, H. W., Runt, J., & Colby, R. H. (2013). Polymerized Ionic Liquids with Enhanced Static Dielectric Constants. Macromolecules, 46(3), 1175-1186. doi:10.1021/ma301833j es_ES
dc.description.references Sørensen, T. S., & Compañ, V. (1995). Complex permittivity of a conducting, dielectric layer containing arbitrary binary Nernst–Planck electrolytes with applications to polymer films and cellulose acetate membranes. J. Chem. Soc., Faraday Trans., 91(23), 4235-4250. doi:10.1039/ft9959104235 es_ES
dc.description.references Wagle, D. V., Baker, G. A., & Mamontov, E. (2015). Differential Microscopic Mobility of Components within a Deep Eutectic Solvent. The Journal of Physical Chemistry Letters, 6(15), 2924-2928. doi:10.1021/acs.jpclett.5b01192 es_ES
dc.description.references Faraone, A., Wagle, D. V., Baker, G. A., Novak, E. C., Ohl, M., Reuter, D., … Mamontov, E. (2018). Glycerol Hydrogen-Bonding Network Dominates Structure and Collective Dynamics in a Deep Eutectic Solvent. The Journal of Physical Chemistry B, 122(3), 1261-1267. doi:10.1021/acs.jpcb.7b11224 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem